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Abstract

Data analysts typically report empirical accuracy scores to support
the efficacy of new methodology. But it has long been understood
that good accuracy performance on a collection of available data
sets is not enough to guarantee useful performance in real-world
deployment of a method. For instance, learned models may fail to
generalize well to new data sets due to issues with stability and
robustness. Some methods may be too expensive in the face of lim-
ited resources (e.g., compute time, memory, or user time) for many
analysts to run at all. In the present paper, we take the opposite per-
spective and ask: what if we considered a wide range of desiderata
for data science methods excluding experimental accuracy? In this
case, we find that a classic algorithm from the literature, namely an
algorithm that always returns 0, achieves peak performance across
a very wide range of desiderata.

1. Introduction

Researchers in artificial intelligence (AI), machine learning (ML),
and data science considered broadly are concerned with developing
accurate algorithms for some task — such as predicting whether a
skin lesion is cancerous from an image [1, 17, 18], translating writ-
ten or spoken text from one language to another [33, 35], or esti-
mating the association between air pollution and health outcomes
[20, 21]. Typically researchers will test their new methods exten-
sively on a variety of data sets; for each data set, researchers will
report a score or metric describing how accurate the results of their
algorithm are. However, it is widely understood that good accuracy
performance on a collection of available data sets is not sufficient
to guarantee useful performance when a method is deployed in the
real-world in the future [8]. For instance, learned models may fail
to generalize well to new data sets due to issues with stability and
robustness. Some methods may be prohibitively expensive in lim-
ited resources (e.g., compute time, memory, or user time) for many
analysts to run [14].
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In the present paper, we take the opposite perspective and ask:
what if we considered a wide range of desiderata for AI/ML meth-
ods except for experimentally confirmed accuracy? We find that
indeed, even when we focus on many such desiderata simultane-
ously, a single algorithm can achieve peak performance relative
to essentially every other AI/ML method across essentially every
desideratum we consider.

We call that method the Zero-Encoding Representation Oper-
ator (or ZERO for short). ZERO returns the number 0, no matter
its input. While this algorithm has been proposed before and stud-
ied extensively in the literature, we are not aware of a systematic
review bringing together a host of its desirable properties in one
place. We here provide that review.

After describing additional related work (section 1.1), we de-
tail the ZERO algorithm (and various illustrative special cases) in
section 2. Then we review its desirable resource efficiency (sec-
tion 3.1), reproducibility and replicability (section 3.2), robustness
(section 3.3), portability and extensibility (section 3.4), and good
theoretical performance (section 3.5). Though we are motivated to
explore its properties beyond empirical performance, we note that
authors have established its good empirical performance as well in
section 3.6.

1.1 Related work

ZERO has been proposed by many authors and is so ubiqui-
tous as to appear frequently in textbooks, though often by dif-
ferent names. Similar methods include constant predictors or es-
timators — though in these cases the constant is sometimes not
equal to 0. While often the training-data mean is treated as a
constant, we emphasize that such a choice has dependence on
the training data while ZERO does not; this distinction will be
relevant to our analysis below. Constant estimators (using the
training-data mean or a true constant) have been extensively
empirically evaluated across many papers. All of these meth-
ods, including ZERO, are so common as to be built into scikit-
learn: https://scikit-learn.org/stable/modules/
model_evaluation.html#dummy-estimators.

ZERO can be seen as a special case of essentially every popular
AI/ML method. For instance, ZERO can be interpreted as a zero-
layer neural network — or alternatively any neural network where
the weights and biases in the final layer are all zero. ZERO also
results from constructing a transformer whose feed-forward net has
weights and biases set to 0. ZERO can be seen as a decision tree
with a single (root) node, no splits, and a zero predictor at the root
(or a summary over many such decision trees). When considered
as a classifier, ZERO can be seen as offering a solution to zero-shot
learning [29, 36] since it need not know all the classes in advance.
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ZERO has been proposed for large language model tasks by Zheng
et al. [41].

2. Setup and method

First, we detail the ZERO algorithm. We observe that ZERO offers
a unified framework for a broad range of tasks of modern interest.
Algorithm. The ZERO algorithm takes any input and returns 0.
See fig. 1 for a full implementation in Python. We illustrate with a
number of special cases next; this list of tasks is not exhaustive for
the range of applications where we can use the ZERO algorithm.
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some collection of observed data. In regression, ) = R. Formally,
in regression, the ZERO algorithm uses the model f(X) = 0.

Classification. In this supervised learning task, ) is a discrete,
countable set. If Y is finite, we can identify its elements with
{0,1,...,|Y|}. If Y is infinite, we can identify its elements with
the natural numbers {0, 1, ...}. In either case, our model can again
be expressed as f(X) = 0.

Language generation. In language generation, an algorithm re-
turns a string after receiving a prompt string. Analogous to the clas-
sification case above, we can think of the set of all finite strings gen-
erated with a finite alphabet as a countable set. Given some ordering
on this set, we can identify each string with a natural number. Then
our model can again be expressed as f(X) = 0, returning the Oth
string (counting from 0). This model has previously been proposed
and studied empirically by Zheng et al. [41].

Estimation. In estimation, we use a function of some collection
of observed data as our guess for an unknown quantity. In this case,
our ZERO algorithm uses the function identically equal to 0, across
all possible observed data sets.

Uncertainty quantification. Often in the tasks above, we want
to return not just our best guess but a range of likely values in
the form of a confidence region. In this case, we use the ZERO
algorithm to arrive at the width of our confidence region, namely 0.
Since our output in the cases above is 0, our confidence region is
therefore {0}.

3. Properties
‘We next describe many desirable properties of the ZERO algorithm.

3.1 Resource efficiency

ZERO is a resource-frugal algorithm; it beats or ties every other
algorithm in (respectively) running time, memory, power, and user-
time demands.

Running time. ZERO has O(1) time complexity.

Memory. ZERO has O(1) space complexity.

Low hardware demand. Depending on the implementation,
ZERO can run on virtually any reasonable hardware, including
microcontrollers. ZERO is therefore suitable for essentially any
embedded system.

Power cost. The power cost of modern Al algorithms is of
increasing concern [3, 9, 22, 38]. Also, embedded systems face
strict power constraints. When ZERO is implemented well, no
algorithm uses less power than ZERO.

User time: coding. ZERO is conceptually straightforward and
easy to implement. It requires fewer than 10 lines of code. For
the user who would prefer not to implement ZERO themselves, it
is already available in many common software packages, includ-
ing scikit-learn: https://scikit-learn.org/stable/

modules/model_evaluation.html#dummy-estimators.

User time: Automation. Many modern Al and ML methods
can require the user to choose free (tuning) parameters or user-
configurable options [10, 11, 40]. While various works aim to in-
crease the automation of otherwise-tedious tuning and hyperparam-
eter search [12, 19, 32, 39], full automation remains elusive. ZERO,
however, is fully black box; it requires no input from the user be-
yond choosing to run the algorithm.

3.2 Reproducibility and Replicability

While it is typically difficult to compare the reproducibility or
replicability of algorithms decisively, we feel confident stating that
no algorithm is more reproducible than ZERO.

Reproducibility. In their Conclusion 3-1, the National Academies
of Sciences, Engineering, and Medicine [26] define reproducibility
as “obtaining consistent results using the same input data; com-
putational steps, methods, and code; and conditions of analysis.”
ZERO always gives the same results.

Facilitates debugging. Since correct implementation impacts
reproducibility, we note that ZERO is straightforward to debug; if
the code does anything other than output 0, rewriting the code to
only output O (and take no other action) eliminates all bugs.

Facilitates transparency. The complexity of code and high
compute demands of modern Al and ML have sometimes hindered
transparency and reproducibility [13]. By contrast, it is easy to
share the full algorithm and code for ZERO. Anyone with any
computing resources has the resources to run and check ZERO.

Privacy-preserving. Even when run on highly sensitive data,
sharing the ZERO algorithm is guaranteed to preserve the privacy
of that data. This property not only offers peace of mind in a
variety of sensitive applications but also facilitates wide sharing
and checking of ZERO by researchers, without need for additional
privacy safeguards.

Replicability. In their Conclusion 3-1, the National Academies
of Sciences, Engineering, and Medicine [26] further define repli-
cability as “obtaining consistent results across studies aimed at an-
swering the same scientific question, each of which has obtained
its own data.” We performed an informal experiment where each of
the three authors of the present paper gathered their own data, wrote
their own implementation of ZERO, and ran their code on their own
data. Every author arrived at exactly the same result (namely, 0).
We conclude that data analyses using ZERO are highly replicable.

The reproducibility and replicability of ZERO contrast with
many modern methods in Al and ML [4, 8], due in part to the
aspects of stability we describe next and also in the robustness
section section 3.3 below.

Randomness in training. Training and evaluation of state-of-
the-art machine learning models often involve randomness [31].
For example, models trained with stochastic gradient descent can
vary substantially across runs [4]. By contrast, our model is entirely
deterministic; for any given fixed dataset, any two runs of the model
will produce identical results.

Invariance to preprocessing. Preprocessing is crucial for the
performance of many machine learning models. Data are often nor-
malized to specific ranges, centered, or adjusted for contrast in the
case of images [2, 6, 28]. However, two researchers might reason-
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ably choose somewhat different preprocessing methods, and we
might hope to reach the same conclusions across reasonable prepro-
cessing choices. ZERO is entirely invariant to preprocessing. This
stability holds for any preprocessing pipeline, whether reasonable
or unreasonable. Given this invariance, researchers can save valu-
able time by entirely avoiding potentially tedious data cleaning and
preprocessing procedures in advance of using ZERO.

3.3 Robustness

We might be concerned about the generalizability of our conclu-
sions if our Al or ML method gives substantively different answers
when the inputs are changed in ways we think should not affect
the conclusions of our data analysis. Robustness in general is not a
monolith; there are many forms of robustness [5, 7, 23, 25], and we
cover only a small subset below. However, ZERO is special among
algorithms in that it is robust to just about any perturbation of in-
terest to Al and ML.

Robustness to missing data and NaNs. Missing data and NaNs
are ubiquitous in real-life applications, but standard ML models
often struggle in these cases [27]. ZERO, however, seamlessly
handles missing data and NaNs in any part of the data. And ZERO
requires no modification from the user to do so.

Robustness to adversaries. Szegedy et al. [34] demonstrated
that nearly imperceptible changes to an image can lead to a sub-
stantial change in the output of an image classifier. Based on this
observation, Szegedy et al. [34] and Rauber et al. [30] formalize ro-
bustness to adversarial attacks as the minimal perturbation required
to change the model’s output significantly.

Definition 1 (Adversarial robustness, Rauber et al. [30]). For dis-
tance £ : Y x Y — Ry and distance dy, : X x X — Ry and a
adversary threshold t > 0, we can define the adversarial robust-
ness of model g, Ry ¢ to be

d+(X, X +9) (1)

R, :=Ex min
5:0(g(X+8),9(X))>t

with convention that ming d = oc.

The following proposition establishes that the ZERO model has
infinite adversarial robustness, the highest one can achieve.

Proposition 1. The ZERO model has adversarial robustness
Ry = ooforallt > 0.

Proof. Since for all 6 and X we have f(X + ¢) = f(X) and in
turn {6 : £(g(X +9),9(X)) >t} = 0. O

It follows that the ZERO algorithm is completely impervious to
adversarial attack.

Robustness to gross errors. In estimation problems, some
models can also be viewed as operators on a distribution, such
as the empirical distribution of a dataset. We can define the ZERO
model as an operator F' acting on the empirical distribution of data
X, denoted as Px. By definition, we have F'(Px) = 0. Another
measure of robustness is through the influence function, which
measures the change in the operator when a small perturbation is
introduced to the distribution on which it operates.

Definition 2 (Influence function and gross-error sensitivity, Huber
and Ronchetti [16]). Denote an € € [0, 1] contamination with a
gross outlier at x of P as Pe ., where

P.o:=(1—¢€)P+ebs 2)
and 6 is a point mass at x. The influence function of an operator
T at distribution P is defined as

T(Pez) = T(P)

[Fyqp=lim — 2/~ 2127 3)
e—0 €

and the gross-error sensitivity can be defined as

~*(T, P) = sup |IFz 1P| 4)

The ZERO model is fully robust for this notion of robustness.

Proposition 2. The ZERO model F has 0 gross-error sensitivity.

Proof. For all P, we have F((P) = 0. Thus, for all 2, we have
IF;, r,p = 0. So, for all P, v*(F, P) = 0. O

3.4 Portability and extensibility

Software dependencies. Modern AI/ML methods often have ex-
tensive software dependencies; these have sometimes served as an
impediment to wider use of new methodologies [24]. For instance,
software package versions can change, with deleterious effects for
an analysis [15]. ZERO, however, has no package dependencies and
is trivially portable across programming languages.

Streaming data. Often new data becomes available for a prob-
lem after an original AI/ML analysis has concluded. ZERO is able
to handle streaming data without modification; it is able to take in
new data on the fly. It requires no knowledge in advance of the rate
or ultimate size of the data stream.

Different data formats. A wide variety of data formats are col-
lected for the purposes of data analysis — from tabular data to dif-
ferent image formats to differen text formats. Moveover, sometimes
new data is collected in a somewhat different format than old data;
e.g., somewhat different features may be collected for data points at
different points in time. Different units or dimensions may be used.
Different precisions may be used when recording data. Sometimes
researchers need to merge data sets collected under different cir-
cumstances. ZERO is inherently able all data formats and indeed
inconsistent data formats across data points.

Multimodality. A longstanding challenge in AI/ML is effec-
tively synthesizing information across multiple image modes —
such as text, images, and tabular data — in a single analysis. ZERO
is able to handle any collection of diverse data types simultane-
ously.

3.5 Theoretical Performance

Theory is often useful to understand how and why empirical per-
formance of AI/ML methods might be expected to generalize be-
yond the particular data sets considered in a data analysis. While
we consider some theoretical qualities (such as robustness) above,
we consider additional properties of ZERO next.

Admissibility. Intuitively admissibility of an estimator means
that there does not exist another estimator that is better (in some
loss) across all possible values of the parameter of interest. It is well
known that, under appropriate assumptions, ZERO as an estimator
is admissible [e.g., a trivial modification of 37, Example 12.18]. We
review one such set of assumptions in proposition 3.

Proposition 3. Consider data X. Suppose the distribution of X
is indexed by parameter € © with 0 € © and all allowed
distributions are absolutely continuous with respect to the one
with & = 0. Consider a loss L(0,0(X)) > 0 that is O only
when 0(X) = 0, with @ € ©. Then the ZERO model f(X) is
admissible; that is, there c{oes not exist an estimator 0 such that,
forall§ € ©, Exo(L(0,0(X))) < Exo(L(0, f(X))) and such
that the inequality is strict for some 0.

Proof. Suppose there exist such an estimator 6. When 0 = 0, we
have Exo(L(0, f(X))) = 0, and thus Ex|o(L(0,6(X))) < 0.
Since L > 0, we must have L(0,0(X)) = 0 almost surely. So



6 (X) = 0 almost surely under § = 0. By assumption, we have al-
lowed all data distributions that are absolutely continuous with re-
spect to the one indexed by # = 0. So we must also have é(X) =0
almost surely under any § € ©. Because §(X) = 0 almost
surely for all 6 the risk Ex|o(L(6,0(X))) = Exo(L(6,0)) =
Ex|o(L(8, f(X))) for all #. This observation contradicts the

assumption that for some 6 # 0 with Exo(L(0,0(X))) <
Exo(L(0, f(X))). =

Width of uncertainty intervals. Uncertainty intervals (such as
confidence intervals or credible intervals) can summarize uncer-
tainty around predictions or estimates. Tighter uncertainty intervals
are generally preferable over wider uncertainty intervals; smaller
intervals reflect that we are more certain of our result. Per section 2,
the uncertainty intervals returned by ZERO have width 0. So, prov-
ably, no other uncertainty intervals can have a smaller width.

3.6 Empirical Performance

Though we were originally motivated to consider properties of
ZERO separate from empirical performance, we also note that
ZERO has sometimes been seen to exhibit state-of-the-art empirical
performance.

Natural language processing. In language generation, ZERO
can be seen as equivalent to the NullModel tested by Zheng et al.
[41]; see section 2. Zheng et al. [41] demonstrated that their
NullModel achieves a high winning rate in automatic large lan-
guage model evaluation pipelines.

4. Discussion

We have seen in the course of this review that ZERO has an ex-
tremely wide range of desirable properties for AI/ML methods. But
itis also self-evidently a very bad output in essentially every AI/ML
task — from prediction to estimation to language or image gener-
ation. This juxtaposition serves as a reminder that these properties,
even all in concert, do not suffice to define a good AI/ML output.
Moreover, some of these properties may come with a cost. Care-
ful considerations of potential trade-offs between robustness, effi-
ciency, and other considerations during model development must
be taken into account.
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