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Abstract
Constant-time algorithms underlie all computation, but are often
discarded as mere building blocks for solving inherently-slow prob-
lems. In this paper, we demonstrate the astonishing power of var-
ious deterministic and nondeterministic models when constrained
to O(1) time.
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1. Introduction
Why study constant-time problems and algorithms?

1. They are the fundamental building blocks of all algorithms.

2. They are practical and scalable beyond compare.

3. If we don’t do it now, someone else will scoop us first [RBV17].

1.1 Background
Complexity theory studies how many resources it takes to solve
computational problems, most commonly running time [HS65].
The most famous is the P vs NP problem, which even has a million
dollar prize for a solution. In this paper, we advance the field by
investigating the underappreciated class of problems that run in
constant time, in both deterministic and non-deterministic models.

Thanks for reading this far into our paper! As as token of our
appreciation, here is a useful fact that we use to simplify our proofs:

Lemma 1.1. f(n) ∈ O(1) iff ∃c.∀n ∈ N.f(n) ≤ c.

Proof. If we only know c,N where ∀n ≥ N.f(n) ≤ c, then take

c′ = max ({f(n) | 0 ≤ n < N} ∪ {c})

and we get the upper bound f(n) ≤ c′ for all n.
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2. Turing Machine Model
We give a full characterization of constant-time Turing Machines.

Definition 2.1. FIN is the set of finite languages.

Definition 2.2. The concatenation of two sets of languages C1, C2

is denoted as C1 ◦ C2 = {L1 ◦ L2 | L1 ∈ C1, L2 ∈ C2}.

Definition 2.3. The addition of two sets of languages C1, C2 is
denoted as C1 + C2 = {L1 ∪ L2 | L1 ∈ C1, L2 ∈ C2}.

Theorem 2.1. TIME(1) = FIN + (FIN ◦ {Σ∗}).

Proof. We show each direction separately.

(⊆) Take any L ∈ TIME(1) solved by TM M in f(n) = O(1)
time, meaning ∃c.∀n. f(n) ≤ c by Lemma 1.1.
When M runs on any w, it takes at most c steps, thus it can
only accept or reject based on the first c characters of w. Thus,
for any wc where |wc| = c and w1, w2 ∈ Σ∗, we have
wcw1 ∈ L ⇐⇒ wcw2 ∈ L. However, if |w| < c, then M
has time to detect that w has less than c characters and accept
or reject based on the whole of w.
Thus, we have sets S = {w ∈ L | c > |w|} and B = L \ S,
so L = S ∪B ∈ FIN + FIN ◦ {Σ∗}

(⊇) Take any L ∈ FIN+FIN◦{Σ∗}, meaning L = S1∪(S2 ◦Σ∗)
for S1, S2 ∈ FIN. Clearly, a deterministic TM can decide if
w ∈ L using brute-force, by testing if w ∈ S1 or if w starts
with any w′ ∈ S2. Since they are finite sets of finite strings, it
will take finite time, so L ∈ TIME(1).

Theorem 2.2. TIME(1) = NTIME(1)

Proof. Take any L ∈ NTIME(1) solved by NTM N in at most
c ∈ N steps. We can create a deterministic TM M that decides
if w ∈ L by simulating all O(|N |)c = O(1) possible paths of
the nondeterminism of N on w, thus L ∈ TIME(1). The other
direction is obvious.

3. Word RAM Model
Definition 3.1 (The Word RAM Model). Memory is an unbounded
array of words, each with ω ≥ logn bits on inputs of size n.
The machine has a constant number of registers and can perform
operations on registers and access memory by index. Initially, one
register contains n and all memory beyond the input is ⊥.

Definition 3.2. L ∈ RAMTIME(f(n)) iff L is decided by a
deterministic Word RAM algorithm in time O(f(n)).

Definition 3.3. L ∈ NRAMTIME(f(n)) iff L is accepted by a
nondeterministic Word RAM algorithm in time O(f(n)), counting
the duration of the longest path.



Definition 3.4. L ∈ CONRAMTIME(f(n)) iff L is accepted by a
nondeterministic Word RAM algorithm in time O(f(n)), counting
the duration of the longest path.

Table 1 details the notation for the Constant Word RAM Time
complexity classes we will be focusing on in this paper.

Shorthand Class
CRT RAMTIME(1)

NCRT NRAMTIME(1)
CONCRT CONRAMTIME(1)

Table 1. Constant-time Word RAM complexity classes.

3.1 The Power of Word RAM
We show that Word RAM allows you to solve more problems in
constant-time compared to Turing Machines.

Theorem 3.1. TIME(1) ⊂ CRT.

Proof. Just simulate the constant-time Turing Machine.

Lemma 3.2. Σ∗1 ∈ CRT

Proof. Just check the last word and see if it is a 1.

Lemma 3.3. Σ∗1 /∈ TIME(1)

Proof. For any Turing Machine M that runs in at most c ≥ 1 time,
M cannot distinguish between 02c0 and 02c1.

Theorem 3.4. TIME(1) ̸= CRT.

Proof. By Lemmas 3.2 and 3.3.

3.2 The Power of Non-determinism
We show that non-determinism greatly improves your power in the
constant-time regime.

Lemma 3.5. CRT ⊂ NCRT.

Proof. Just don’t do non-deterministic things.

Lemma 3.6. 0∗ ∈ NCRT.

Proof. Given a w of length n, guess the index i ∈ [0, n) of the non-
zero then do a single read and comparison to verify the answer.

Lemma 3.7. 0∗ /∈ CRT.

Proof. Suppose for the sake of contradiction that an deterministic
algorithm M decides 0∗ in at most c steps. On input w = 0n for
n > c, M reads at most c words from the input then accepts w, so
its answer doesn’t depend on the values in n − c > 0 positions.
If we create w′ to be w except all of those positions are 1, M
will behave the same and accept w′, which is incorrect. Due to this
contradiction, M cannot exist.

Theorem 3.8. CRT ̸= NCRT.

Proof. By Lemma 3.5, non-determinism isn’t a weakness, and by
Lemmas 3.6, and 3.7, deciding 0∗ in constant time requires non-
determinism.

3.3 Importance of Knowing the Input Length
Lemma 3.9. If the input size n is not known initially, then non-
determinism is required to compute n in constant time.

Proof. To compute n with non-determinism, we simply guess n
then verify that index n contains ⊥ but the previous index does not.

For the sake of contradiction, suppose a deterministic M can
compute n in at most c time. Let i1, i2, . . . , ic be the indices that
M reads when each location returns an initial value of 1, and let
i = max{ij | 1 ≤ j ≤ c}. If M on input 1i correctly determines
that it has length i, then it will also incorrectly return i on all longer
inputs 1i+m for m > 0. By this contradiction, M cannot exist.

Definition 3.5. L ∈ RAMTIME-NO-N(f(n)) if it is decided
by a deterministic Word RAM algorithm in time O(f(n)) with-
out knowing n in advance. Denote RAMTIME-NO-N(1) as
CRT-NO-N.

Theorem 3.10. TIME(1) = CRT-NO-N on a finite alphabet Σ.

Proof. First, you don’t need to know the input length to simulate a
Turing Machine. Second, for L ∈ CRT-NO-N, suppose algorithm
R decides L in at most c steps without knowing n.

Since in c steps, R can only access c indices of memory, R can
only distinguish between at most |Σ ∪ {⊥}|c = O(1) equivalence
classes of strings which share the same values at the accessed
indices. Identify these classes as Cs where s is the shortest string
in Cs, and let m be the longest length of any s, thus also the largest
index that R will ever access.

We can therefore define a Turing Machine M that decides
x ∈ L by simulating R running on the first m characters of the
input in at most cm = O(1) steps.

3.4 Closure
Lemma 3.11. CRT and NCRT are both closed under union and
intersection.

Proof. We are given M1,M2 deciding L1, L2 in at most c1, c2
time. On input w, we run M1 on w (being sure to reset memory
afterwards) then M2 on w. If we are deciding union, we accept
if either accepted, and for intersection we accept if both accepted.
Total time is O(c1 + c2) = O(1).

Definition 3.6. MIDDLE-ELEVEN = {x11y | x, y ∈ Σn}.

Lemma 3.12. MIDDLE-ELEVEN ∈ CRT.

Proof. Just divide n by 2 (such as by bit-shifting) to get the middle
indices then read those words to verify they are 11.

Lemma 3.13. CRT is not closed under concatenation.

Proof. We show MIDDLE-ELEVEN ◦ MIDDLE-ELEVEN is
not in CRT, which alongside Lemma 3.12 proves the claim. This
new language is equivalent to the following:

{x11yu11v | x, y ∈ Σn and u, v ∈ Σm}

Like Lemma 3.15, for the sake of contradiction, let M decide
it in at most c time, and take any wn,m = 0n110n+m1001+m

that M must reject. Since M can only read at most c positions of
wn,m, it must erroneously accept one of wn+i,m−i for i ∈ [0, 2c]
and n,m ≥ 3c to distinguish it from 0n110n+m110m.

Lemma 3.14. NCRT is closed under concatenation.



Proof. We are given N1, N2 deciding L1, L2 in at most c1, c2 time.
To decide w ∈ (L1 ◦ L2) of length n, we let w = w1w2, guessing
the length |w1| ∈ [0, n), and then run N1 on w1 (being sure to
reset the at-most-c2 words of memory used afterwards) then N2 on
w2 (being sure to account for the offset in memory) to verify that
w1 ∈ L1 and w2 ∈ L2. Total time is O(c1 + c2) = O(1).

Lemma 3.15. 0∗ /∈ NCRT

Proof. Similarly to Lemma 3.7, suppose for the sake of contradic-
tion that N decided 0∗ in at most c time.

On any input wn,m = 0n10m, on every non-deterministic
path N must reject. However, in order to distinguish wn,m from
0n+1+m, N must read the 1 in the middle on every path. Since
N can only read from c indices at once on a single path, N
must erroneously accept on one of wn+i,m−i for i ∈ [0, 2c] and
n,m ≥ 3c. By this contradiction, N cannot exist.

Since clearly the single-string language 0 ∈ NCRT, we get the
following corollary.

Corollary 3.16. NCRT is not closed under star.

Theorem 3.17. NCRT is not closed under complement.

Proof. By Lemmas 3.6 and 3.15.

3.5 Regularity
We show that the regular languages aren’t a good model for
constant-time algorithms.

Theorem 3.18. CRT and NCRT on finite Σ are incomparable
with the regular languages.

Proof. By Lemma 3.15, the regular 0∗ /∈ NCRT, and by Lemma 3.12,
MIDDLE-ELEVEN ∈ CRT even though it is not regular.

3.6 Context-freedom
We show that some non-context-free languages can be decided in
constant-time.

Definition 3.7. POW-TWO = {Σn | n = 2m,m ∈ N}, which is
clearly not context-free.

Lemma 3.19. POW-TWO ∈ CRT.

Proof. Just test if n has only one bit set.

3.7 Hardness
Definition 3.8. B is CRT-hard if any language A ∈ CRT can be
reduced to B by a constant-time transducer, denoted A ≤1 B. We
define NCRT-hard similarly. B is complete if it is also a member
of the class.

Definition 3.9. ACCEPTRAM is the following language:

{(x,M, c) | RAM algorithm M accepts x in at most c time}
Theorem 3.20. ACCEPTRAM is CRT-hard.

Proof. Take any A ∈ CRT, which is decided by a deterministic
algorithm M that runs in at most c time. We can decide if M
accepts x in at most c time by testing if (x,M, c) ∈ ACCEPTRAM,
using the transducer which simulates a longer input where M and
c are written after x in memory.

Similarly, we get the following analogous results.

Corollary 3.21. ACCEPTNRAM is NCRT-hard.

Corollary 3.22. ACCEPTCONRAM is CONCRT-hard.

Conjecture 3.1. ACCEPTRAM is not in CRT.

Conjecture 3.2. Nothing is CRT-complete.

3.8 Characterization
Theorem 3.23. NCRT and CONCRT are incomparable language
classes.

Proof. By Lemmas 3.6 and 3.15 and definition of “CO-”, we have
that 0∗ /∈ NCRT so 0∗ /∈ CONCRT, and that 0∗ ∈ NCRT so
0∗ ∈ CONCRT.

4. Constant Time with Oracles
4.1 Secondary Tape Model
Classic objects of study for computational complexity are so-called
oracle machines, where a machine is augmented with an additional
tape to write queries to some other language, which are answered
magically in one step. However, these are entirely insufficient for
studying constant-time problems, as seen by the following results.

Lemma 4.1. A Turing machine augmented with a secondary tape
of constant size can be simulated by a single-tape Turing machine
with no time overhead.

Proof. Store the secondary tape in the state.

Theorem 4.2. TIME(1)B = TIME(1) for all languages B.

Proof. Let MB be an oracle Turing machine that decides A in at
most c steps, including oracle steps.

If MB makes any queries to x ∈ B, then it must be that |x| ≤ c
since there isn’t enough running time to write down more symbols
on the oracle tape. Thus, MB is equivalent to MB′

where the finite
language B′ = {x | x ∈ L, |x| ≤ c}.

Since B′ ∈ FIN ⊆ TIME(1), there is some Turing Machine
which decides B′ in at most d steps, thus we can replace the oracle
with an concrete algorithm that runs on a c-sized secondary tape in
O(dc) steps. By Lemma 4.1, we can simulate this with a single-tape
Turing machine with no overhead, therefore A ∈ TIME(1).

The same technique holds for all other models: in constant
time, only constant-size queries can be written on a secondary
tape/memory, so all oracles are equivalent to oracles for finite
languages and thus can be replaced by constant-time algorithms.

Corollary 4.3. NTIME(1)B = NTIME(1) for all languages B.

Corollary 4.4. CRTB = CRT for all languages B.

Corollary 4.5. NCRTB = NCRT for all languages B.

Corollary 4.6. CONCRTB = CONCRT for all languages B.

4.2 Transducer Model
To study oracles in a non-trivial way, we must abandon the oracle
tape model and find a way to give the oracle super-constant-sized
inputs without having to write them down explicitly. Our solution
is an oracle-oracle, an oracle that we give to the oracle that answers
queries about which symbols are in the query we want to ask.

Definition 4.1. TRAMTIME(g(n)) is the class of functions
f(x) = y for which there is a Word RAM transducer t such that
computing t(x, i) = yi takes O(g(n)) time.

Definition 4.2. An oracle-oracle machine MB is a Word RAM
machine with an oracle OB for language B, where queries are
made by providing OB with an oracle fx for the symbols of the
query x, implemented as a transducer with read-only access to
memory.



Definition 4.3. RAMTIME(f(n))△C
TRAMTIME(g(n)) is the class

of languages decided by oracle-oracle machines that run in O(f(n))
time, are augmented with oracle-oracles for language or complex-
ity class C, and use transducers that run in O(g(n)) time. Similar
oracle-oracle classes are defined and notated similarly.

As a sanity check, we see the following result:

Lemma 4.7. A ∈ CRT△A
TRAMTIME(1) for any language A.

Proof. We create an oracle-oracle machine MA which on input x
queries x ∈ A with the identity transducer. MA just makes one
query and mirrors the result, and the transducer takes O(1) steps to
read and return the value at a given index, so MA decides A and
we get that A ∈ CRT△A

TRAMTIME(1).

5. Finest-Grained Complexity
The often-exciting field of “Fine-grained” complexity claims to
study the exact amount of time required to solve problems, though
often results are still limited to distinguishing between asymptotic
bounds like O(n2) vs Ω(n3).

In this section, we consider truly-fine-grained complexity and
arrive at stunning and unconditional hierarchy results.

Theorem 5.1. Define Lt = {w | w starts with t ones}. For all
t ∈ N, Lt can be decided in at most t steps, and requires at least t
steps in the worst case, on a Turing machine.

Proof. Let algorithm At implement the regular expression 1tΣ∗:

Q = {q0, q1, · · · , qt−1, qACCEPT, qREJECT}
δ(qi, 1) = (qi+1, 1, R) if i < t− 1

δ(qt−1, 1) = (qACCEPT, 1, R)

δ(qi, σ) = (qREJECT, σ, R) for all σ ̸= 1

Any Turing machine algorithm that takes fewer than t steps
cannot distinguish between 1t and 1t−10 since there is not enough
time to reach the end of the input.

Theorem 5.2. Define Lt = {w | w starts with t ones}. For all
t ∈ N, Lt can be decided in at most c1t+ c2 steps, and requires at
least t steps in the worst case, in (non)deterministic Word RAM for
some constants c1, c2 ∈ N.

Proof. Let algorithm At simulate the Turing machine algorithm
from Theorem 5.1. No matter how you count steps, it is linear in the
constant t. If some Word RAM algorithm could always take fewer
than t steps, then it cannot distinguish between 1t and 1i01t−1−i

for some i ∈ [0, t] since it doesn’t have time to read all of the first
t symbols.

6. Pushing the Boundaries of Constant
We have so far been using the following definition of constant time:

Definition 6.1. An algorithm runs in strongly constant time if its
runtime is T (n) = O(1) unconditionally.

In this section, we extend traditional Word RAM variations to
the constant time regime.

6.1 Pseudo-Constant Time
Here, we allow the runtime to be super-constant with respect to the
numeric values in the input.

Definition 6.2. An algorithm runs in pseudo-constant time if its
parameterized runtime is TV (n) = f(V ) where V is the maximum
value in the input and f is constant with respect to n.

Lemma 6.1. Factoring one word takes pseudo-constant time.

Proof. The trial division algorithm on an integer x that fits into one
word runs in O(x) time, which does not vary with respect to the
input size n = 1 (notably, 1 cannot vary).

Theorem 6.2. For any decidable language L, the following lan-
guage

L′ = {(n, x) | x ∈ L, n = |x|}
is pseudo-constant time.

Proof. Let M decide L in at most T (n) time (monotonic). The
maximum word in the input V is at least n, so there is an M ′

which ignores n and runs M on x will run in pseudo-constant
O(T (n)) = O(T (V )) = TV (n) time.

6.2 Weakly Constant Time
Now, we will consider the case where the runtime can be super-
constant with respect to the word size ω.

Definition 6.3. An algorithm runs in weakly constant time if its
parameterized runtime is Tω(n) = f(ω) where ω is the number of
bits per word and f is constant with respect to n.

Theorem 6.3. The languages of deterministic Linear Bounded
Automata are decidable in weakly constant time.

Proof. Given a dLBA M for a language L in n space and T (n)
time, we can simulate it in Word RAM on input x with length n in
its size 2ω ≥ n memory and in time s(T (n)) = O(s(T (2ω))) =
Tω(n) time for some simulation overhead function s.

Corollary 6.4. The languages of non-deterministic Linear Bounded
Automata, the Context-Sensitive Languages, are recognizable in
weakly constant non-deterministic time.

7. Conclusion
We have introduced a variety of constant-time models of computa-
tion, and solved many of the most critical questions in complexity
theory with regards to them.

However, there is still much room for future work. Here are
some promising avenues of inquiry:

• Randomized algorithms, such as expected constant time and
always correct, or worst-case constant time and high probability

• Approximation algorithms: what are optimal approximation
factors achievable in constant time for various problems?

• Parallel algorithms: what can multiple processors or distributed
agents compute in constant time?

• Cryptography: what encryption is optimal against constant-time
adversaries? What problems have zero-knowledge proofs for
constant-time verifiers? Best protocols for verifiable delegation
of constant-time computation?

• Quantum algorithms, such as constant-depth quantum circuits
or a classical machine with a constant number of qubits

• Generative AI: forget Large Language Models, what about
Constant-size Language Models?
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