
Country-Fried Coq: Overly-
Formalized Nonstandard Arithmetic
with Applications to Computer Science Research

Michael Coulombe

Abstract
Country-Fried Coq is an extension to the popular proof assistant
software Coq to support nonstandard arithmetic. Did you know
there is a natural number k with the properties “0 < k”, “1 < k”,
“2 < k”, “3 < k”, and so on for EVERY numeral? In any nonstan-
dard proof using axioms { “n_1 < k”, “n_2 < k , ... , “n_m < k” },
we could just redefine k as max(n_1, n_2, ... , n_m)+1 to get a stan-
dard proof. In this paper, I give a novel approach for taking way too
long to formally-verify this simple idea in Coq; introduce Country-
Fried Coq, which adds this number to Coq itself; and show that it
has a home in your computer science recipe book.

Keywords Formal Verification, Peano Arithmetic, Nonstandard
Methods, Fried Foods

1. Introduction
The natural numbers N = {0, 1, 2, 3, 4, . . .} are very important,
especially in computer science. Peano Arithmetic (PA) is a the-
ory that tried to outline the defining properties of these numbers,
along with operators + and ×, in formal logic [8]. However, math-
ematicians have come to show that the familiar N is not the only
model of PA: other models satisfy all the axioms, like N∗ shown
in Figure 1.1. These nonstandard models contain “infinite-sized”
nonstandard natural numbers, giving rise to nonstandard PA theo-
ries with extra axioms to define their properties, as well as theories
of nonstandard real numbers and more.

Coq is a widely-used proof assistant software based on con-
structive type theory. It tricks you into thinking you are writing and
verifying formal proofs, but it’s actually just functional program-
ming with extra features. No background is required or provided.

In this paper, I give a new implementation of PA and nonstan-
dard PA in Coq; prove how to transfer proofs between both theories
and turn them into Coq proofs about the nat type, verifying their
consistency; invent a new transfer method; describe Country-Fried
Coq, which makes Coq itself nonstandard; and explain why com-
puter scientists should care. Buckle up and enjoy the ride!
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Figure 1.1. The Nonstandard Natural Number Line. The model
N∗ has a juicy and tender initial segment of all standard naturals N
covered in a crisp, buttermilky breading made with infinitely-many
copies of the integers Z, as dense as the rationals Q.

2. Representing Peano Arithmetic in Coq
2.1 Language of Arithmetic
The language of PA is made up of expressions and propositions.
An expression is represented with the PeanoExpr data type, and a
proposition is represented with the PeanoProp data type.

(N)PeanoExpr Meaning

0 Zero

Sx Successor of x

x+ y Addition of x and y

x× y Multiplication of x and y

vi Variable with index i: nat

k The nonstandard number k > N
(only present in NPeanoExpr)

(N)PeanoProp Meaning

> True

⊥ False

¬p Not p

x = y (N)PeanoExpr x equals y

p ∨ q p or q

p ∧ q p and q

p→ q p implies q

∀p for all n, p(n)

∃p exists n, p(n)



The language of nonstandard PA is represented with nearly-
equivalent data types NPeanoExpr (with one extra case: a sym-
bol for a nonstandard number k) and NPeanoProp. This possibly-
suboptimal decision ended up requiring many functions and identi-
ties to convert between the two during proofs. The full list of cases
are displayed above.

One of the most difficult aspects of this project was handling
scopes and variables. I chose to use the method of DeBruijn In-
dices, where PeanoExpr vi represents the variable of the ith quan-
tifier above (yes, one-indexed; more on this later). For example, the
term ∀∃ (v1 = v2) : PeanoProp represents ∀x.∃y.y = x as stated
in conventional notation. DeBruijn Indices have many advantages
over named variables, especially in functional languages, but there
are still many challenges reasoning about this representation. My
implementation was inspired by [1].

2.2 Property Functions
Analyzing the language of PA requires functions to test or extract
different properties of expressions and propositions, and if that
makes your mouth water then this section is your proverbial jumbo
bucket of wings.

No Zero Variables The predicate X verifies that a PeanoExpr
or PeanoProp doesn’t contain any v0 instances. Because I used
one-indexed DeBruijn Indices, v0 is reserved as a placeholder for
performing substitutions and thus is not a valid expression in the
language of PA. This implementation detail has its pros and cons.
This predicate can also be extended to a list of PeanoProp to check
them all at once. For completeness, the full specification is listed
below.

X0 , True

XSx , Xx
X (x+ y) , (Xx) and (Xy)

X (x× y) , (Xx) and (Xy)

Xvi , (i 6= 0)

Xk , True

X> , True

X⊥ , True

X¬p , Xp
X (x = y) , (Xx) and (Xy)

X (p ∨ q) , (Xp) and (Xq)
X (p ∧ q) , (Xp) and (Xq)
X (p→ q) , (Xp) and (Xq)

X∀p , Xp
X∃p , Xp
X [] , True

X (h :: Γ) , (Xh) and (XΓ)

References DeBruijn Index The predicate refj tests if an index
j is referenced anywhere, taking scope into account; the missing
cases are obvious. You will not see this much.

refj (vi) , (i = j)

refj (x+ y) , (refjx) or (refjy)

refj (∀p) , refj+1 (p)

refj (∃p) , refj+1 (p)

Minimum Scope An actually important property is the V·W func-
tion, which equals the maximum index of any referenced free vari-
able (or 0 if closed), thus the minimum size scope of free vari-
ables needed to contain it; the missing cases are just as obvious as
before. Here, I use the “Pseudo-Predecessor” function pred with

pred (0) = 0 and pred (Sn) = n.

VviW , i

Vx+ yW , max (VxW, VyW)

V∀pW , pred (VpW)

V∃pW , pred (VpW)

Valid Scope However, pred is very annoying when doing induc-
tive proofs. It is often more convenient to use a combined predicate
which tests V·W ≤ d for a particular d, since this is almost always
what I really care about. This formulation is proven equivalent to
separately calculating then testing (by Lemma 3.4), so there won’t
be a new notation.

VviW ≤ d , i ≤ d
Vx+ yW ≤ d , (VxW ≤ d) and (VyW ≤ d)

V∀pW ≤ d , VpW ≤ d+ 1

V∃pW ≤ d , VpW ≤ d+ 1

Numeral Embedding To convert from an i: nat to a PeanoExpr
numeral representing the same natural number, I will use conven-
tional iterated function notation Si0.

2.3 Transformation Functions
Reasoning about PeanoExpr and PeanoProp in context of the
axioms of PA requires a variety of functions to transform them, and
this section is the all-you-can-eat buffet. Missing cases will always
be obvious.

Increment Free Variables The function ↑d recursively incre-
ments the DeBruijn Indices of all free variables to an expression e
or proposition p within d quantifiers. This is used when I want to
put something inside a quantifier without breaking variable refer-
ences.

↑d vi ,

{
vi if i < d

vi+1 if i ≥ d
↑d (x+ y) ,

(
↑d x

)
+
(
↑d y

)
↑d ∀p , ∀ ↑d+1 p

↑d ∃p , ∃ ↑d+1 p

As an example use-case, I define syntactic sugar below for
PeanoProp versions of the inequality operators, where ↑1 is used
to free-up the variable v1 to be the distance from x to y.

x ≤ y , ∃
((
↑1 x

)
+ v1 =

(
↑1 y

))
x < y , ∃

((
↑1 x

)
+ Sv1 =

(
↑1 y

))
Decrement Free Variables Similarly, the function ↓d decrements
those indices, except it replaces vd with v0 for the purpose of
substitution.

↓d vi ,


vi if i < d

v0 if i = d

vi−1 if i > d

↓d (x+ y) ,
(
↓d x

)
+
(
↓d y

)
↓d ∀p , ∀ ↓d+1 p

↓d ∃p , ∃ ↓d+1 p

It’s clear that this is the left inverse, where ↓d↑d p = p as long as
p contains no v0, but this incredibly profound identity (Lemma 3.7)
is rarely needed.

Placeholder Substitution Another important function is ☼e,
which replaces all occurrences of v0 with a PeanoExpr e, which



has its free variables incremented as needed.

☼evi ,

{
e if i = 0

vi if i > 0

☼e (x+ y) , (☼ex) + (☼ey)

☼e∀p , ∀☼(↑1e)p

☼e∃p , ∃☼(↑1e)p

Beta Substitution The preceding functions allow us to define
a (e) , ☼e ↓1 a. This allows us to “apply” a term with index
1 free to a given PeanoExpr e. For example, if p is ∀ (v1 = v2),
which has index 1 free, then we have:

p (e) , ☼e ↓1 ∀ (v1 = v2) , ∀
(
v1 = (↑1 e)

)
Put an S in Front of Every Reference to DeBruijn Index d On
a related note, for representing induction, it was nice to have this
function σd, which does what it says on the tin.

σdvi ,

{
Svi if i = d

vi if i 6= d

σd (x+ y) ,
(
σdx

)
+
(
σdy

)
σd∀p , ∀σd+1p

σd∃p , ∃σd+1p

Standard to Nonstandard Conversion Everything in standard PA
is valid in nonstandard PA, and this conversion is traditionally noted
with a superscript ∗, such as>∗. However, the other direction needs
something to replace any occurrences of the nonstandard symbol k.
For my purposes, I replace every k with the literal Sk0 for a given
k: nat using the conversion function �k. Again, I show this is the
left inverse: for all k, �k (a∗) = a (Lemma 3.29).

Standard to Coq Conversion For formal verification, I also need
to be able to convert valid PeanoExpr and PeanoProp into equiv-
alent nat and Set1, respectively. Given L : list nat of free vari-
able values, this conversion is done with the LL·M function, de-
scribed below. Notably, if Xe and VeW ≤ length L, then LLeM
will have every occurrence of vi replaced by the ith element of L,
with no index-out-of-bounds issues.

LL0M , 0

LLSxM , S (LLxM)
LLx+ yM , LLxM +nat LLyM
LLx× yM , LLxM×nat LLyM

LLviM , nth_default (0, 0 :: L,i)

LL>M , True

LL⊥M , False

LL¬pM , LLpM→ False

LLx = yM , LLxM = LLyM
LLp ∨ qM , LLpM +Set LLqM
LLp ∧ qM , LLpM×Set LLqM
LLp→ qM , LLpM→ LLqM

LL∀pM ,
∏

v:nat

(v :: L) LpM

LL∃pM ,
∑
v:nat

(v :: L) LpM

LL[]M , True

LLh :: ΓM , LLhM×Set LLΓM

1 Set was chosen over Prop because in Coq, proofs of a Prop only exist at
the type level. For example, if H : exists v, P v then one cannot extract
v from H and print it to the user . . . what skulduggery is that?! Why even
bother with constructive logic if it doesn’t let you construct?

Standard to Nonstandard Conversion 2 I also introduce a new
transformation function �d, which standardizes by recursively re-
placing k with a variable vd, respecting scopes.

�dk , vd
�d∀p , ∀�d+1p

�d∃p , ∃�d+1p

List Insertion I also define these functions to insert an item into
a list, since Coq does not include them.

nth_insert (L, x, n) , firstn (L, n) ++ [x] ++skipn (L, n)

push (L, x) , L++ [x]

2.4 Axioms
Given the language of Peano Arithmetic, I can now formalize
its axioms in the natural deduction style. I write the underlying
parameterized data type (N)PeanoTheorem(d,Γ, p) as Γ `d p,
meaning that p is provable from the ordered list of assumptions Γ
in the context of d free variables. Parameterizing on d was a novel
and very impactful decision that is discussed further in Section 7.
The deduction rules are thus represented by the constructors for
Γ `d p, listed in Table 1. The choice of axioms was influenced by
[2, 4, 5, 7].

Proof Properties To analyze these axioms, given a nonstandard
thm : Γ `d p, it will be useful to define the “Maximum Nonstan-
dard Axiom” function H·I that picks out the largest i: nat of all
applications of Nbig (i, . . .) rules in thm, or 0 if none exist. I also
define the “Is It Constructive?” predicate constr which tests for
the use of LEM in thm. Implementations left to the reader, but make
sure you don’t burn yourself on the hot oil!

3. Lemmas À La Carte
If you aren’t hungry enough for a full Theorem, browse the largest
menu of bite-sized Lemmas this side of the Mississippi River! They
are the core ingredients of the main results in Section 4.

3.1 The Cold Hard Truth
Lemma 3.1. ☼v0a = a.

Lemma 3.2. If Xe then ☼xe = e.

Lemma 3.3. If Xe then X☼xe.

Lemma 3.4. VaW ≤ d (“Minimum Scope”) if and only if VaW ≤ d
(“Valid Scope”).

Lemma 3.5. If VxW ≤ d and VfW ≤ d then V☼xfW ≤ d.

Lemma 3.6. If VxW ≤ d and VpW ≤ d+ 1 then Vp (x)W ≤ d.

Lemma 3.7. ↓d↑d a = a.

Lemma 3.8. If Xa then a = ☼(vd+1) ↓
d+1↑d+2 a. In particular,

we have a =
(
↑2 a

)
(v1).

Lemma 3.9. If Xa and ∼ refd+1a then a = ☼x ↓d+1↑d+2 a. In
particular, if ∼ ref1a then we have a =

(
↑2 a

)
(x).

Lemma 3.10. ↑d Sk0 = Sk.

3.2 Standard to Nonstandard Conversion Identities
Lemma 3.11. a = b if and only if a∗ = b∗.

Lemma 3.12. Xa if and only if Xa∗.

Lemma 3.13. VaW = Va∗W.

Lemma 3.14.
(
↑d a

)∗
=↑d a∗.



XΓ VΓW ≤ d
Xh VhW ≤ d
h :: Γ `d h (HypoUse)

Xh
VhW ≤ d
Γ `d p

h :: Γ `d p (HypoLift)
Γ `d p

↑1 Γ `(d+1)↑1 p
(ScopeLift)

Γ `d Sx = Sy

Γ `d x = y
(EqS)

XΓ VΓW ≤ d
Xx VxW ≤ d

Γ `d ¬ (Sx = 0)
(SneqZ)

XΓ VΓW ≤ d
Xx VxW ≤ d

Γ `d x = 0 ∨ ∃ (↑1 x = Sv1)
(SorZ)

XΓ VΓW ≤ d
Xx VxW ≤ d

Γ `d x = x
(EqRefl)

XΓ VΓW ≤ d
Xx VxW ≤ d

Γ `d (x+ 0) = x
(PlusZ)

XΓ VΓW ≤ d
Xx VxW ≤ d

Γ `d (x× 0) = 0
(TimesZ)

VpW ≤ d
Γ `d x = y

Γ `d (☼xp)→ (☼yp)
(EqSubP)

XΓ VΓW ≤ d
Xx VxW ≤ d
Xy VyW ≤ d

Γ `d (x+ Sy) = S (x+ y)
(PlusS)

XΓ VΓW ≤ d
Xx VxW ≤ d
Xy VyW ≤ d

Γ `d (x× Sy) = x+ (x× y)
(TimesS)

XΓ VΓW ≤ d
Γ `d > (ATrue)

p :: Γ `d q
Γ `d p→ q

(ImpIntro)
Γ `d p→ ⊥

Γ `d ¬p (NotIntro)

XΓ VΓW ≤ d
Xp VpW ≤ d
Γ `d ⊥ → p

(AFalse)

Γ `d p→ q
Γ `d p
Γ `d q (ImpElim)

Γ `d ¬p
Γ `d p→ ⊥ (NotElim)

Γ `d p ∧ q
Γ `d p (AndLeft)

Γ `d p ∧ q
Γ `d q (AndRight)

Γ `d p
Γ `d q

Γ `d p ∧ q (AndIntro)

Xp
VpW ≤ d
Γ `d q

Γ `d p ∨ q (OrLeft)

Xq
VqW ≤ d
Γ `d p

Γ `d p ∨ q (OrRight)

Γ `d p ∨ q
Γ `d p→ r
Γ `d q → r

Γ `d r (OrElim)

Γ `d p (0)
Γ `d ∀

(
p→ σ1p

)
Γ `d ∀p (Induct)

XΓ
VΓW ≤ d

↑1 Γ `(d+1) p

Γ `d ∀p (ForGen)

Xx
VxW ≤ d
Γ `d ∀p

Γ `d p (x)
(ForApp)

XΓ VΓW ≤ d
Xp VpW ≤ d
Γ `d p ∨ ¬p (LEM)

Xq
Γ `d ∃p

↑1 Γ `(d+1) p→↑1 q
Γ `d q (ExElim)

Xx
VxW ≤ d

Γ `d p (x)

Γ `d ∃p (Exhibit)

for all i : nat,
XΓ VΓW ≤ d
Γ `d Si0 < k

(Nbig, only present for NPeanoTheorem)

Table 1. The constructors of PeanoTheorem (d,Γ, p), written as Γ `d p, which represent PA’s deduction rules. The constructors of
NPeanoTheorem (d,Γ, p) are the same (except the names are prepended with an N) with one additional rule Nbig.

Lemma 3.15.
(
↓d a

)∗
=↓d a∗.

Lemma 3.16. (☼ea)∗ = ☼e∗a
∗.

Lemma 3.17. (a (e))∗ = a∗ (e∗).

Lemma 3.18.
(
σda

)∗
= σda∗.

3.3 Nonstandard to Standard Conversion Identities
Lemma 3.19. VaW = V�kaW.

Lemma 3.20. Xa if and only if X�ka.

Lemma 3.21. �k ↑d a =↑d �ka.

Lemma 3.22. �k
(
↑1
)d
a =

(
↑1
)d �ka.

Lemma 3.23. If d ≤ k then �k ↓d a =↓d �ka.

Lemma 3.24. �k☼va = ☼(�kv)�
ka.

Lemma 3.25. �kp (v) =
(
�kp
) (
�kv
)
.

Lemma 3.26. �kσda = σd�ka.

Lemma 3.27. �k (a < b) =
(
�ka
)
<
(
�kb
)
.

Lemma 3.28. �k
(
Si0
)

= Si0.

Lemma 3.29. �k (a∗) = a.

3.4 Nonstandard to Standard Conversion 2 Identities
Lemma 3.30. If d < k and VaW ≤ d then V�kaW ≤ k.

Lemma 3.31. Xa if and only if X�k+1a.

Lemma 3.32. If d ≤ k then �k+1 ↑d a =↑d �ka.



Lemma 3.33. If d ≤ k then �k+1
(
↑1
)d
a =

(
↑1
)d �ka.

Lemma 3.34. If d ≤ k then �k ↓d a =↓d �k+1a.

Lemma 3.35. �k+1☼va = ☼(
�k+1

v
)�k+1a.

Lemma 3.36. �k+1p (v) =
(
�k+2p

) (
�k+1v

)
.

Lemma 3.37. If k 6= d then �kσda = σd�ka.

Lemma 3.38. �d+1 (a < b) =
(
�d+1a

)
<
(
�d+1b

)
.

Lemma 3.39. �k
(
Si0
)

= Si0.

3.5 List Insert Properties
Lemma 3.40. If i < n and i < length (L) then

nth_error (nth_insert (L, x, n) , i) = nth_error (L, i)

Lemma 3.41. If n ≤ length (L) then

nth_error (nth_insert (L, x, n) , n) = Some (x)

Lemma 3.42. If n ≤ i then

nth_error (nth_insert (L, x, n) , i + 1) = nth_error (L, i)

Lemma 3.43. If length l ≤ n then

push (l, x) = nth_insert (l, x, n)

3.6 Theorem Syntactic Correctness
Lemma 3.44. Given thm : Γ `d p, we have VΓW ≤ d and
VpW ≤ d.

Lemma 3.45. Given thm : Γ `d p, we have XΓ and Xp.

3.7 Conversion Fold Relations
Lemma 3.46. LLfoldr (Γ,→, p)M if and only if LLΓM→ LLpM.

Lemma 3.47. Vfoldr (Γ,→, p)W ≤ d if and only if VΓW ≤ d and
VpW ≤ d.

Lemma 3.48. foldr
(
↑d Γ,→, ↑d p

)
=↑d foldr (Γ,→, p).

Lemma 3.49. If d ≤ length (L) and XΓ and VΓW ≤ d and
v : nat, then LLΓM→ (v :: L)L↑1 ΓM.

3.8 Coq Conversion Lemmas
Lemma 3.50. If Xe and VeW ≤ length (L) and d ≤ length (L),
then LLeM= nth_insert (L, v, d)L↑d+1 eM.

Lemma 3.51. If Xp and VpW ≤ length (L) and d ≤ length (L),
then LLpM if and only if nth_insert (L, v, d)L↑d+1 pM.

Lemma 3.52. If LLxM= LLyM then LL☼xeM= LL☼yeM.

Lemma 3.53. If LLxM= LLyM then LL☼xpM if and only if LL☼ypM.

Lemma 3.54. LL☼x ↓n+1 eM = nth_insert (L, LLxM, n) LeM if
Xe and n ≤ length (L).

Lemma 3.55. If Xp and n ≤ length (L), for xn =
(
↑1
)n
x we

have LL☼xn ↓n+1 pM if and only if nth_insert (L, LLxnM, n) LpM.

Lemma 3.56. If Xp then LLp (x)M if and only if (LLxM :: L) LpM.

Lemma 3.57. If Xp then nth_insert (L, v,n) Lσn+1pM if and
only if nth_insert (L, v + 1,n) LpM. In particular, for n = 0, we
get that (v :: L)Lσ1pM if and only if ((v + 1) :: L)LpM.

3.9 Formalized Arithmetic Derivations
Lemma 3.58. If VfW ≤ d and Γ `d x = y then

Γ `d ☼xf = ☼yf

Proof. An explicit proof is given in Figure 3.1.

Lemma 3.59. If Γ `d x = y then Γ `d y = x.

Proof. An explicit proof is given in Figure 3.2.

Lemma 3.60. If Γ `d x = y and Γ `d y = z then Γ `d x = z.

Proof. An explicit proof is given in Figure 3.3.

Lemma 3.61. If Γ `d x < y then Γ `d x < Sy.

Proof. An explicit proof is given in Figure 3.4.

Lemma 3.62. If i < k, then Γ `d Si0 < Sk0 as long as XΓ and
VΓW ≤ d.

Proof. I perform induction on k. Obviously i < 0 is a contradic-
tion, so given i < k + 1 and hypotheses thmj : Γ `d Sj0 < Sk0
for all j < k, we want to show Γ `d Si0 < Sk+10. If i < k, then
we can just apply Lemma 3.61 to thmi : Γ `d Si0 < Sk0 and
we’re done! However, if i = k, then I provide an explicit proof of
Γ `d Sk0 < Sk+10 in Figure 3.5.

3.10 Formalized Logical Derivations
Lemma 3.63. If Γ `d ∃p and ↑1 Γ `d+1 p→↑1 ∃q then Γ `d ∃q.

Proof. Did you know that the existential quantifier was a monad?
This “flat map”-like lemma follows directly from ExElim.

Lemma 3.64. If Γ `d p→ q and Γ `d q → r, then Γ `d p→ r

Proof. An explicit proof is given in Figure 3.6.

Lemma 3.65. If Γ `d ∃p and ↑1 Γ `d+1 p→ q then Γ `d ∃q.

Proof. An explicit proof is given in Figure 3.7.

Lemma 3.66. If Γ `d p→ q then p :: Γ `d q.

Proof. An explicit proof is given in Figure 3.8.

Lemma 3.67. If Γ `d p → (q → r) then Γ `d q → (p→ r).
Corrolarolly, if p :: q :: Γ `d r then q :: p :: Γ `d r.

Proof. An explicit proof is given in Figure 3.9.

Lemma 3.68. If L++ [h] ++Γ, n `d p then h :: L++Γ `d r.

Proof. I perform induction on the length of L. When L = [] it is
trivially true, and to show length ` implies length `+ 1, an explicit
proof is given in Figure 3.10.

Lemma 3.69. If h :: L++Γ `d r then L++ [h] ++Γ, n `d p.

Proof. Suspiciously similar to Lemma 3.68, induction on the length
of L is trivial when L = [] and an explicit proof of the inductive
step is given in Figure 3.11.

Lemma 3.70. If nth_insert (Γ, p, n) `d r and Γ `d q → p then
nth_insert (Γ, q, n) `d r.

Proof. An explicit proof is given in Figure 3.12.



XΓ VΓW ≤ d
X☼xf V☼xfW ≤ d

Γ `d ☼xf = ☼xf
(EqRefl)

V☼xf = ☼v0fW ≤ d Γ `d x = y

Γ `d ☼x (☼xf = ☼v0f)→ ☼y (☼xf = ☼v0f)
(EqSubP)

Γ `d ☼xf = ☼xf → ☼xf = ☼yf
(simplify)

Γ `d ☼xf = ☼yf
(ImpElim)

Figure 3.1. Explicit Proof that Equal Substitutions are Equal, Lemma 3.58.

XΓ VΓW ≤ d
Xx VxW ≤ d

Γ `d x = x
(EqRefl)

Vv0 = xW ≤ d Γ `d x = y

Γ `d ☼x (v0 = x)→ ☼y (v0 = x)
(EqSubP)

Γ `d x = x→ y = x
(simplify)

Γ `d y = x
(ImpElim)

Figure 3.2. Explicit Proof of the Symmetry of Equality, Lemma 3.59.

Γ `d y = z

Vv0 = zW ≤ d Γ `d x = y

Γ `d y = x
(3.59)

Γ `d ☼y (v0 = z)→ ☼x (v0 = z)
(EqSubP)

Γ `d y = z → x = z
(simplify)

Γ `d x = z
(ImpElim)

Figure 3.3. Explicit Proof of the Transitivity of Equality, Lemma 3.60.

x′ + Sv1 = y′ , x′ + Sv1 = y′

x′ + Sv1 = y′ , (↑2 x′) (Sv1) + Sv1 = (↑2 y′) (Sv1)
(3.9)

x′ + Sv1 = y′ , (↑2 (x′ + v1 = y′)) (Sv1)

(x′ + Sv1 = y′) ::↑1 Γ `d+1 (↑2 (x′ + v1 = y′)) (Sv1)
(HypoUse)

(x′ + Sv1 = y′) ::↑1 Γ `d+1 ∃ ↑2 (x′ + v1 = y′)
(Exhibit (Sv1))

(x′ + Sv1 = y′) ::↑1 Γ `d+1↑1 ∃ (x′ + v1 = y′)

↑1 Γ `d+1 x′ + Sv1 = y′ →↑1 ∃ (x′ + v1 = y′)
(ImpIntro)

Γ `d x < y

Γ `d ∃ (x′ + Sv1 = y′)
(def of <, x′, y′)

...
↑1 Γ `d+1 x′ + Sv1 = y′ →↑1 ∃ (x′ + v1 = y′)

(above)

Γ `d ∃ (x′ + v1 = y′)
(3.63)

...
Γ `d ∃ (x′ + v1 = y′)

(above)

done!
(x′ + v1 = y′) ::↑1 Γ `d+1 x′ + v1 = y′

(HypoUse)

(x′ + v1 = y′) ::↑1 Γ `d+1 ☼(x′+v1)Sv0 = ☼(y′)Sv0
(3.58)

(x′ + v1 = y′) ::↑1 Γ `d+1 S (x′ + v1) = Sy′

↑1 Γ `d+1 x′ + v1 = y′ → S (x′ + v1) = Sy′
(ImpIntro)

Γ `d ∃ (S (x′ + v1) = Sy′)
(3.65)

...
Γ `d ∃ (S (x′ + v1) = Sy′)

(above)

done!
Γ `d x′ + Sv1 = S (x′ + v1)

(PlusS)

Γ `d S (x′ + v1) = x′ + Sv1
(3.59)

Γ `d ☼S(x′+v1) (v0 = Sy′)→ ☼(x′+Sv1) (v0 = Sy′)
(EqSubP)

↑1 Γ `d+1 S (x′ + v1) = Sy′ → x′ + Sv1 = Sy′

Γ `d ∃ (x′ + Sv1 = Sy′) , where x′ ,↑1 x and y′ ,↑1 y
(3.65)

Γ `d x < Sy
(def of <)

Figure 3.4. Explicit Proof of whatever x < y → x < Sy is called, Lemma 3.60.



XΓ VΓW ≤ d
Γ `d Sk0 + S0 = S (Sk0 + 0)

(PlusS)

XΓ VΓW ≤ d
Γ `d Sk0 + 0 = Sk0

(PlusZ)

Γ `d ☼(Sk0+0) (Sv0) = ☼(Sk0) (Sv0)
(3.58)

Γ `d S (Sk0 + 0) = Sk+10
(simplify)

Γ `d Sk0 + S0 = Sk+10
(3.60)

Γ `d ∃ (Sk0 + Sv1 = Sk+10)
(Exhibit (0))

Γ `d Sk0 < Sk+10
(def of <)

Figure 3.5. Explicit Proof that Successor Returns a Bigger Number, Lemma 3.62

done!
p :: Γ `d p (HypoUse)

Γ `d p→ q

p :: Γ `d p→ q
(HypoLift)

p :: Γ `d q (ImpElim)
Γ `d q → r

p :: Γ `d q → r
(HypoLift)

p :: Γ `d r (ImpElim)

Γ `d p→ r
(ImpIntro)

Figure 3.6. Explicit Proof of Transitivity of Implication, Lemma 3.64.

Γ `d ∃p
↑1 Γ `d+1 p→ q

done!
q ::↑1 Γ `d+1 q

(HypoUse)

q ::↑1 Γ `d+1 (↑2 q) (v1)
(3.8)

q ::↑1 Γ `d+1 ∃ ↑2 q (Exhibit (v1))

q ::↑1 Γ `d+1↑1 ∃q (def of ↑)

↑1 Γ `d+1 q →↑1 ∃q (ImpIntro)

↑1 Γ `d+1 p→↑1 ∃q (3.64)

Γ `d ∃q (3.63)

Figure 3.7. Explicit Proof of Implication under Exists, Lemma 3.65.

Γ `d p→ q

p :: Γ `d p→ q
(HypoLift)

done!
p :: Γ `d p (HypoUse)

p :: Γ `d q (ImpElim)

Figure 3.8. Explicit Proof of Unintroducing Implication, Lemma 3.66.

Γ `d p→ (q → r)

q :: Γ `d p→ (q → r)
(HypoLift)

p :: q :: Γ `d q → r
(3.66)

done!
q :: Γ `d q (HypoUse)

p :: q :: Γ `d q (HypoLift)

q :: p :: Γ `d r (ImpElim)

Γ `d q → (p→ r)
(ImpIntro, twice)

Figure 3.9. Explicit Proof of Implication Commutation, Lemma 3.67.

(q :: L) ++ [h] ++Γ `d p
L++ [h] ++Γ `d q → p

(ImpIntro)

h :: L++Γ `d q → p
(inductive hypothesis)

q :: h :: L++Γ `d p (3.66)

h :: (q :: L) ++Γ `d p (3.67)

Figure 3.10. Explicit Proof of inductive step bringing h to the front, Lemma 3.68.

h :: (q :: L) ++Γ `d p
q :: h :: L++Γ `d p (3.67)

h :: L++Γ `d q → p
(ImpIntro)

L++ [h] ++Γ `d q → p
(inductive hypothesis)

(q :: L) ++ [h] ++Γ `d p (3.66)

Figure 3.11. Explicit Proof of inductive step removing h from the front, Lemma 3.68.



Γ `d q → p

nth_insert (Γ, p, n) `d r
p :: Γ `d r (3.68)

Γ `d p→ r
(ImpIntro)

Γ `d q → r
(3.64)

q :: Γ `d r (ImpIntroRev)

nth_insert (Γ, q, n) `d r (3.69)

Figure 3.12. Explicit Proof for rewriting a hypothesis, Lemma 3.70

3.11 Formalized Arithmetic Derivations V: The Empire
Strikes Back

Lemma 3.71. If Γ `d x = y then Γ `d Sx = Sy.

Proof. This follows directly from Lemma 3.58.

Lemma 3.72. If Γ `d Sx0 + Sy0 = Sx+y0, assuming XΓ and
VΓW ≤ d.

Proof. By induction on y, the base case is PlusZ, and the inductive
step uses PlusS and Lemmas 3.60 and 3.71.

Lemma 3.73. Γ `d ∀ (0 + v1 = v1 + 0), as long as XΓ and
VΓW ≤ d.

Proof. The commutativity of adding zero is proven with Induct.
The base case is solved by EqRefl, and the inductive step is solved
with ForGen and a gravy boat filled with Lemmas 3.60 and 3.59,
EqSubE and EqSubP, HypoUse, ImpIntro and ImpElim, and most
importantly PlusZ and PlusS.

Lemma 3.74. Γ `d ∀∀ (v2 + v1 = v1 + v1), given XΓ and
VΓW ≤ d.

Proof. The commutativity of addition is proven with Induct. The
base case is Lemma 3.73, and the inductive step is solved with
ForGen then another Induct with a dash of secret spices: ForApp
and ForGen, Lemmas 3.60, 3.59, 3.73 and 3.71, HypoLift and
HypoUse, ImpIntro, and PlusS.

Lemma 3.75. Γ `d Sx+ y = S (x+ y), if all X and V·W ≤ d.

Proof. I show this reversed version of PlusS with Lemmas 3.60,
3.59, 3.71, and 3.74 (requiring ForApp) and PlusS itself.

Lemma 3.76. Given XΓ and VΓW ≤ d, if i + 1 ≤ d, then
Γ `d Sx0 + (Sy0 + vi+1) = (Sx0 + Sy0) + vi+1.

Proof. This limited associativity of addition is proven by induction
on y. For Γ `d Sx0 + (0 + vi+1) = (Sx0 + 0) + vi+1, I
mixed Lemma 3.73 and PlusZ in a pot with paprika and olive
oil then bake at 425◦ for 30 minutes. While that’s going, to get
Γ `d Sx0 +

(
Sy+10 + vi+1

)
=
(
Sx0 + Sy+10

)
+ vi+1 from

the inductive hypothesis, I applied my famous dessert sauce: 1
liter of blended Lemma 3.75 with cinnamon and white chocolate
chips.

Lemma 3.77. Given XΓ and VΓW ≤ d+ 1, we have:

Γ `d+1
(
Smax(x,y)0 < vd+1

)
→ (Sx0 < vd+1)

Proof. This one has a long proof, so I’ll cut to the chase. The core
idea is to extract Sα, the distance from Smax(x,y)0 to vd+1, then
exhibit S

(
Smax(x,y)−x0 + α

)
as the distance from Sx0 to vd+1,

then push the symbols around to prove the inequality. The critical
steps are the uses of Lemmas 3.76 and 3.72.

4. Signature Results
4.1 30 pc. InducTenders Box
I show that given any standard thm : Γ `d p, one can construct the
corresponding Set in Coq.2 However, there is one caveat: because
PA includes the Law of Excluded Middle rule LEM but Coq uses
constructive logic, one does require that thm is constructive to avoid
assuming some classical logic.

Definition 4.1. PALEM is true if the Law of Excluded Middle is
true for all Set that are “PA-like,” meaning for all q : PeanoProp
and L where Xq and VqW ≤ length (L), we have LLq ∨ ¬qM.

Theorem 4.2. Given a standard thm : Γ `d p and an L : list nat
such that d ≤ length (L), and either constr (thm) or PALEM, we
can prove LLΓM→ LLpM in Coq.

Proof. By Lemma 3.46, I use LLΓM→ LLpM and LLfoldr (Γ,→, p)M
interchangeably. We also have that Vfoldr (Γ,→, p)W ≤ d by
Lemma 3.44. We perform induction on the proof thm, for each
standard case in Table 1. For brevity, I will omit referencing LLΓM
when it merely needs to be copied from a hypothesis, and omit
proving Vfoldr (Γ,→, p)W ≤ d ≤ length (L) and X require-
ments, although they form a significant amount of the Coq code.

1. HypoUse: We must show LLh :: ΓM → LLhM, which by defini-
tion is LLhM× LLΓM→ LLhM, which is clearly true since we can
ignore the right-hand argument.

2. HypoLift: Given inductive hypothesis LLΓM → LLpM, it easily
follows that LLh :: ΓM → LLpM since it equals LLhM × LLΓM →
LLpM and we can ignore the left-hand argument and just use the
inductive hypothesis.

3. ScopeLift: Given LLfoldr (Γ,→, p)M and L′ = v :: L, by
Lemma 3.51 we get L′L↑1 foldr (Γ,→, p)M, and by Lemma
3.48 that equals L′Lfoldr

(
↑1 Γ,→, ↑1 p

)
M.

4. EqS: Given LLSx = SyM, which equals S (LLxM) = S (LLyM), by
inversion LLxM= LLyM thus LLx = yM.

5. SneqZ: We can simplify LL¬Sx = 0M to (S (LLxM) = 0) →
False, which is true by discrimination on nat.

6. SorZ: By Lemma 3.50, LLx = 0∨∃
(
↑1 x = Sv1

)
M reduces to

(LLxM = 0) +
∑
v:nat

(LLxM = S (v))

By case analysis on LLxM: nat, this is clearly true.
7. EqRefl: LLxM= LLxM is true by reflexivity.
8. EqSubP: Given LLxM= LLyM, this follows from Lemma 3.53.
9. PlusZ: LLxM+0 = LLxM is true by math.

10. TimesZ: LLxM×0 = 0 is true by math.
11. PlusS: LLxM+S (LLxM) = S (LLxM+LLxM) by math.
12. TimesS: LLxM×S (LLxM) =LLxM+ (LLxM×LLxM) by math.

2 Given LLpM, one can construct [] `0 p as well. I have discovered a truly
marvelous proof of this, which this footnote is too short to contain.



13. ATrue: LL>M , True is trivially true.
14. AFalse: Given LL⊥M , False, LLpM is true by explosion.
15. ImpIntro: Using Lemma 3.46, given the inductive hypothesis

LLfoldr (p :: Γ,→, q)M , LLpM× LLΓM→ LLqM

we curry the function to get LLΓM→ LLpM→ LLqM.
16. ImpElim: If LLpM → LLqM and LLpM, then we have LLqM by

implication.
17. NotIntro: LLpM→ False is equivalent to LLpM→ False.
18. NotElim: LLpM→ False is equivalent to LLpM→ False.
19. AndLeft: Given LLpM× LLqM, we have LLpM on the left.
20. AndRight: Given LLpM× LLqM, we have LLqM on the right.
21. AndIntro: Assuming LLpM and LLqM, we split and apply both

assumptions to get LLpM× LLqM.
22. OrLeft: LLpM is the left case of LLpM + LLqM.
23. OrRight: LLqM is the right case of LLpM + LLqM.
24. OrElim: Stumbling across LLpM + LLqM, LLpM → LLrM, and

LLqM→ LLrM, even a newborn logician can perform case analy-
sis on the former to get LLrM by applying one of the latter two.

25. Induct: Upon being granted the gifts of base case LLp (0)M
that by Lemma 3.56 is (0 :: L) LpM, as well as the inductive step
LL∀

(
p→ σ1p

)
M that by Lemma 3.57 is∏

v:nat

(v :: L) LpM→ ((v + 1) :: L) LpM

we easily get
∏

v:nat

(v :: L) LpM by induction on v.

26. ForGen: Assuming LLΓM and v : nat, we would show (v :: L)LpM
if we could apply the inductive hypothesis

(v :: L)L↑1 ΓM→ (v :: L)LpM

but deriving the antecedent takes some work. Fortunately, that
work is done by Lemma 3.49!

27. ForApp: If you are walking down a lonely road and a hooded
figure reveals to you in a hushed tone that

∏
v:nat

(v :: L) LpM, do

not be afraid! You can be secure in knowing LLp (x)M because
by Lemma 3.56 it is equivalent to (LLxM :: L) LpM, which is a
special case of the hidden knowledge they have shared.

28. ExElim: If LLΓM→
∑
v:nat

(v :: L) LpM and

(v :: L)L↑1 ΓM→ (v :: L)LpM→ (v :: L)L↑1 qM
then to show LLΓM → LLqM we can use Lemma 3.49 and then
Lemma 3.51!

29. Exhibit: Hey, you want to hide x? I can do it, for a price.
Hand over your LLp (x)M and I’ll apply Lemma 3.56 to get
(LLxM :: L) LpM. That’s not enough? Well, I know a guy who
could get ya

∑
v:nat

(v :: L) LpM, which I assure you is no different

than the LL∃pM you’re looking for.
30. LEM: “I wish LEM need not have happened in my time,” I hear

you say. So do I, and so do all who live to see such times. But
that is not for them to decide. All we have to decide is what to do
with the time that is given us. If you thought that constr (thm),
then I am glad you are here with me; here at the end of all things.
Otherwise, it does not do to leave a live dragon out of your
calculations, if you live near him: the mighty PALEM proudly
proclaims LLp ∨ ¬pM! May the hair on your toes never fall out,
dear reader.

Thus by induction we have LLΓM→ LLpM as claimed.

The consistency of Peano Arithmetic immediately follows: Coq
proves ⊥ is not derivable from the axioms of PA.

Corollary 4.3. There is no standard thm : [] `0 ⊥, assuming
constr (thm) or PALEM, given that Coq is consistent.

4.2 Breast & Rewrite-Wing Combo
I show that nonstandard PA is equiconsistent with standard PA by
showing how to convert proofs between them.

Theorem 4.4. For a standard thm : Γ `d p, we have Γ∗ `d p∗
with the same constructivity.

Proof. Easily follows by induction on thm using the ∗-related Lem-
mas 3.11, 3.12, 3.13, 3.14, 3.16, 3.17, and 3.18.

Now for the interesting direction:

Theorem 4.5. For a nonstandard thm : Γ `d p and all k > HthmI,
we have �kΓ `d �kp with the same constructivity.

Proof. I perform induction on thm, now for each nonstandard case
in Table 1. I will omit all uses of conversion Lemmas 3.19 and
3.20 and uses of facts like that max (Hthm1I, Hthm2I) < k implies
Hthm1I < k and Hthm2I < k.

1. NScopeLift: Apply ScopeLift, using Lemma 3.22.
2. NSorZ: Apply SorZ, using Lemma 3.22.
3. NEqSubP: Apply EqSubP, using Lemma 3.24.
4. NInduct: Apply Induct, using L’Hôpital’s rule3.
5. NForGen: Apply ForGen, using Lemma 3.22.
6. NForApp: Apply ForApp, using Lemma 3.25.
7. NExElim: Apply ExElim, using Lemma 3.22.
8. NExhibit: Apply Exhibit, using Lemma 3.25.
9. NLEM: If we come across this case, the original proof was not

constructive, so it’s OK to apply LEM.
10. Nbig: Get your napkins ready for the main course. From

Lemma 3.28, I need Γ `d Si0 < Sk0 as a standard deriva-
tion from the inductive hypothesis i < k, which is achieved in
Lemma 3.62.

11. In all other cases Nα, apply α.

Thus by induction I have �kΓ `d �kp as claimed.

By these two Theorems 4.4 and 4.5, plus Lemma 3.29, I have
formally-verified one of the most powerful principles underlying
nonstandard methods.

Corollary 4.6 (Transfer Principle). Γ `d p if and only if Γ∗ `d p∗.

The consistency of Nonstandard Peano Arithmetic immediately
follows from Corollaries 4.6 and 4.3 as well.

Corollary 4.7. There is no nonstandard thm : [] `0 ⊥, assuming
constr (thm) or PALEM, given that Coq is consistent.

4.3 Drum & Thigh-orem Fill Up
When a nonstandard proposition does include k, Theorem 4.5 pro-
vides a bottomless bowl of standard derivations for every substi-
tuted numeral Sk0. I will now describe a novel and stronger method
of transfer: a single derivation where k becomes a lower-bounded
free variable within PA itself. Rather than replacing each use of an
axiom Nbig (i, . . .) with a concrete proof of Si0 < Sk0, it is re-
placed with an application of HypoUse, as I will have inserted the
hypothesis Si0 < vs (and a new variable vs in place of k) into the
environment.

3 Actually, just use Lemmas 3.25 and 3.26



Theorem 4.8. Given any nonstandard thm : Γ `d p and k =
HthmI, we have the following standard derivation with the same
constructivity:

push
(
�d+1Γ, Sk0 < vd+1

)
`d+1 �d+1p

Proof. I proved this by induction on thm. The only significant
difference between this and Theorem 4.5 is that when recursing,
we may need to rewrite Sk0 < vd+1 using Lemma 3.70. For
example, we have HthmI = max (Hthm1I, Hthm2I) when there are
two sub-derivations, thus their respective inductive hypotheses will
have SHthm1I0 < vd+1 and SHthm2I0 < vd+1 instead. In these
cases, I use Lemma 3.70 to rewrite the hypothesis according to
Lemma 3.77.

5. Country-Fried Coq
Given the formal verification of this technique for modeling non-
standard Peano arithmetic, I present the Country-Fried Coq lan-
guage extension (alpha release) that adds support for a nonstandard
k : nat and the infinite family of axioms Si0 < k to Coq, and a
proof-of-concept preprocessor implementing it, the Deep Fryer.

In Country-Fried Coq, code may import NonstandardNumber.v
to obtain the definition of nonstandard_k : nat, and import any
file of the form NonstandardAxiom [x] .v to gain access to the ax-
iom nonstandard_axiom_ [x] : [x] < nonstandard_k. For ex-
ample, the command “Require Import NonstandardAxiom7.”
imports the axiom nonstandard_axiom_7 : 7 < nonstandard_k.
This nonstandard extension to the language cannot lead to False,
as shown by Corollary 4.7, given that you trust Coq, otherwise you
shouldn’t be using it in the first place.

Deep Fryer Writing a preprocessor for this extension is rather
simple. The Deep Fryer has two modes: a Nonstandard Mode
(Algorithm 1) that creates an Axiom for k and each x < k used
in your project, and a Standard Mode (Algorithm 2) that uses
Theorem instead, baking-in a standard value for k based on the
conversion from nonstandard Γ `d p to standard �kΓ `d �kp of
Lemma 4.5.

I implement the Standard Mode proofs with Coq tactics that
repeatedly apply lt_n_S : ∀n∀m.n < m → S n < S m until
the left-hand side is zero, then applies lt_0_succ : ∀n.0 < S n to
finish, which always works because k was picked to be larger than
every x. Compared to the proof of Lemma 3.62, this only takes two
lines to write; producing the formal derivation is left as an exercise
to the reader. I can’t spoil all the fun for you! Once the preprocessor
is complete, compilation can begin as normal.

Can I turn a NPeanoTheorem into a Set with nonstandard_k?
Not exactly. It’s true that all the verification results of Section 4
transfer perfectly well to Country-Fried Coq. However, Country-
Frying Nbig (“for all i : nat, Γ `d Si0 < k”) means that
the Country-Fried k represents a nonstandardly nonstandard nat
greater than any standardly nonstandard nat, thus the type of
derivation Nbig (nonstandard_k) is Γ `d Snonstandard_k0 < k,
leading to double-fried, golden brown, extra-crispy goodness.

6. Takeout Menu
If you came for the computer science applications, this section
is for you! Take home these freshly-cooked nuggets of research
potential.

6.1 Asymptotic Analysis
As a computer scientist, you surely know Big O notation. Unlike
other leading brands, nonstandard PA offers an equivalent yet su-
perior formulation of this important research tool.

Algorithm 1 The Deep Fryer: Nonstandard Mode

1. Build a set X containing all numbers x such that
“Require Import NonstandardAxiom [x] .” is a command in
the project.

2. Create a new file NonstandardNumber.v with this text:
Axiom nonstandard_k : nat.

3. For each x ∈ X , create a new file NonstandardAxiom [x] .v
by substituting x into this text:

Require Import NonstandardNumber.
Axiom nonstandard_axiom_ [x] : [x]< nonstandard_k.

Algorithm 2 The Deep Fryer: Standard Mode

1. Build a set X like before (Algorithm 1).

2. Let k = max (X ∪ {0}) + 1.

3. Create a new file NonstandardNumber.v by substituting k into
this text:

Definition nonstandard_k : nat := [k] .

4. For each x ∈ X , create a new file NonstandardAxiom [x] .v
by substituting x into this text:

Require Import Coq.Arith.Arith.
Require Import NonstandardNumber.
Theorem nonstandard_axiom_ [x] : [x]< nonstandard_k.
Proof.
repeat apply lt_n_S.
apply Nat.lt_0_succ.
Qed.

Definition 6.1. For f, g : N→ N, g (n) = O (f (n)) if and only
if there exists N, c ∈ N such that for all n > N , g (n) ≤ cf (n).

Theorem 6.2. g (n) = O (f (n)) if and only if g∗ (k) ≤ c∗f∗ (k)
for some c ∈ N.

Proof. Clearly if for all n > N , g (n) ≤ cf (n), then by the trans-
fer principle (4.6) and k > N∗ we have g∗ (k) ≤ c∗f∗ (k). For the
other direction, we can use Theorem 4.8 to show the following:

thm : Γ∗ `d g∗ (k) ≤ c∗ × f∗ (k)

push (Γ, SHthmI0 < vd+1) `d+1 g (vd+1) ≤ c× f (vd+1)

Γ `d+1 SHthmI0 < vd+1 → g (vd+1) ≤ c× f (vd+1)

Γ `d ∀n. (SHthmI0 < n→ g (n) ≤ c× f (n))

Γ `d ∃c.∀n. (SHthmI0 < n→ g (n) ≤ c× f (n))

Γ `d ∃N.∃c.∀n. (N < n→ g (n) ≤ c× f (n))

Γ `d g (n) = O (f (n))

As a practical example, 18(n + 500) + 1 = O (n) has been
proven as follows:

9000 < k
9001 ≤ k

18k + 9001 ≤ 18k + k
18(k + 500) + 1 ≤ 19k

18(n+ 500) + 1 = O (n)
4

4 What? Nine thousand?!?



This technique applies more broadly than just asymptotic nota-
tion. If you are ever too lazy to choose a “sufficiently-large” num-
ber in your research, consider choosing the nonstandard number k
instead. Ten minutes before the deadline, you can quickly use The-
orem 4.5 to figure out a standard value to substitute for it.

6.2 Always-Satisfiable Constraint Solvers
Theorems 4.5 and 4.8 both can be thought of as constraint solvers
on Peano Arithmetic proofs. From this innovative perspective, the
“axioms” Nbig (i, . . .) may be viewed as constraints on the vari-
able k, and the equiconsistency of this nonstandard theory is a
consequence of the fact that a system of only lower-bound-by-a-
constant constraints is always solvable. If you ever have a system
of always-satisfiable constraints, consider recasting your problem
as a nonstandard theory.

6.3 Machine Learning Sum of Squares Randomized
Quantum Cryptographic Big Data Science

If you work with real numbers, consider using Nonstandard Anal-
ysis, where you can use the infinitesimal 1

k < 1
i

for all i ∈ N to
simplify your limits, integrals, derivatives, and so on. I recommend
[6] as an introduction to the field5.

7. Surviving Thierry Coquand’s Wild Ride
“A computer will do what you tell it to do, but that may be much
different from what you had in mind.” – Joseph Weizenbaum [3]

The trials and tribulations behind research papers are often
swept under the rug and lost to time, but in this section I will reflect
on some of the challenges I faced while formalizing these results in
the roller-coaster ride currently known as Coq.

7.1 Minimum Scope
While writing this paper, it dawned on me that the “Minimum
Scope” function actually has no purpose: that Γ `d p, aka
PeanoTheorem(d,Γ, p), has no functional reason to parameter-
ize on d. It is only truly needed in Theorem 4.2, where the test
d ≤ length (L) ensures the list L is large enough to cover all
free variable values, but this d value could easily be computed
on-demand instead. This was disappointing because proving how
the various transformation functions (Section 2.3) affect the “Mini-
mum Scope” of a PeanoExpr or PeanoProp makes up a significant
portion of the work.

My unapologetically post hoc excuse for this decision is that, by
including d and proving that the deduction rules satisfy these con-
straints, we gain additional confidence that the deduction rules are
properly tracking free variables, provide insight into how different
syntactic operations affect DeBruijn Index values, and give future
provers more control to restrict the number of free variables in their
theorems. By the sunk cost principle, d shall never be removed.

7.2 Automation
For an amateur, it’s hard to make reusable tactics to automate the
many different kinds of inductive proofs done in this paper. Here
were some of the most useful ones I wrote:

Inductive NatCompare (x y : nat) :=
| CompEq (e : x ?= y = Eq) (c : x = y)
| CompLt (e : x ?= y = Lt) (c : x < y)
| CompGt (e : x ?= y = Gt) (c : y < x).
Lemma nat_compare_split x y : NatCompare x y.

5 The ordered field (R∗,+,×, 0, 1, <), to be precise.

Ltac tactic_nat_cmp_split x y :=
let e := fresh "e" in
destruct(nat_compare_split x y) as [e|e|e];
rewrite e in *;
simpl in *;
auto.

Ltac tactic_nat_ltb_split_basic x y :=
let e := fresh "e" in
let LE := fresh "LE" in
let GT := fresh "GT" in
destruct(le_lt_dec (S x) y) as [LE|GT];
unfold Nat.ltb in *;
[ rewrite (leb_correct _ _ LE) in *
| rewrite (leb_correct_conv _ _ GT) in * ].

Ltac tactic_destruct_and := repeat match goal with
| [ H : ?P /\ ?Q |- _ ] => destruct H; auto
end.

7.3 Advice for You
1. Use the Search command to find uses of a given set of terms

in your project, and Locate to find what file they’re in.

2. Use library Psatz and its lia tactic (or similar) to prove basic
arithmetic for you. Just don’t check how the sausage is made...

3. Setoids are neat: the tactics reflexivity, symmetry, and
transitivity worked with my Set-level if-and-only-if with
no boilerplate after proving the properties normally.

Iff (A B : Set) : Set := (A→ B)× (B→ A).

4. If you’re stuck on an induction, generalize! For example,
proving Lemma 3.14 for PeanoProp used induction to show
∀p.
(
∀d.
(
↑d p

)∗
=↑d p∗

)
rather than ∀p.

(
↑d p

)∗
=↑d p∗ for

an arbitrary d.

5. To use multiple files, have a _CoqProject file that contains:

−Q . ””

7.4 Statistics
This project hatched in May 2021, but it only grew its wings in
December 2021. The Coq source files total to about 13K lines,
336K bytes, 54 Definitions, 12 Inductives, 16 Ltacs, 61 Fixpoints,
284 Lemmas, and 14 Theorems6. In comparison, the Deep Frier
is just 70 simple lines of code I threw together one day in the
D programming language.

8. Conclusion
I spent way too long verifying these delicious theorems for you, so I
hope you licked your plate clean. Future work includes formalizing
more-extreme nonstandard theories of arithmetic that include a
standard (·) predicate for distinguishing between N and N∗ \ N
within the theory itself.
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6 Do you see what I mean by “Overly-Formalized” now?
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