
Optimum Space Complexity Lower Bound
Achieved by Quantum Pong Circuit

Abstract
Pong™ is a classic game that has been recreated numerous times,
but since it was discovered 40 years ago, the space complexity
of a quantum computer implementation of Pong has remained an
open question. Disproving the short-lived conjecture that it requires
O(wh) qubits for an w × h playing field, QONG is a quantum
circuit that implements Pong using O(logwh3) qubits to store the
game-state and zero scratch qubits, bringing the upper bound on the
minimum number of qubits required to the information-theoretic
space lower bound as well as only taking polylog time per step.
QONG was also implemented in Javascript to play.

1. Introduction
A classical circuit for Pong™was originally discovered by Al Al-
corn at Syzygy/Atari in 1972 [4, 5]. Alcorn was keenly aware that
space complexity of the Pong circuit was a fundamental problem,
as his original circuit had ”no memory other than flip flops” and
”not a single line of software code was involved in the construc-
tion of Pong” [4]. In the past 40 years, the classical Pong circuit
has been extensively redesigned and optimized on a variety of plat-
forms, alongside but separated from the development and matura-
tion of the field of quantum computing, despite the discovery of the
universality of quantum simulation [3].

In pursuit of the grand unified theory of fundamental physics,
complexity theory, and video game design, QONG is the first
known quantum circuit for Pong, a circuit which uses the information-
theoretic minimum-size game-state, and a reversible algorithm that
requires no additional scratch-space qubits.

2. Previous Work
Many have attempted to simulate Pong using quantum mechanical
principles, though most researchers have focused on playing Ping-
Pong with entangled particles as a communication protocol [1].
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The most promising result so far was in 2013, when a quan-
tum wave simulation with paddles was developed by Daniel
Zerbino [7], which starts with a Gaussian amplitude for the ball
that propagates chaotically in every direction until a shared ”mea-
surement” button is pressed to collapse the ball into a Gaussian
again. While entertaining, Zerbino’s ”Order 4 Runge-Kutta reso-
lution of the Schroedinger equation applied to a WaveFunction” is
not simulating a quantum circuit.

3. The Game
QONG implements Pong as it was originally discovered. Given a
discrete field of width w and height h (where n = dlog2 we and
m = dlog2 he), there are two paddles of unit width and length ` at
distance g from the left and right sides and a unit ball that starts in
the center. In each step, the ball moves one unit in each direction
based on its 2-bit velocity vector, bouncing off of the paddles and
the top and bottom walls by reversing its velocity in that direction.
The paddles move based on each player’s joystick input (neutral,
up, or down) within the bounds of the top and bottom walls. The
game is lost by the first player to have the ball hit the wall behind
their paddle.

Extensions to the game include obstacles which apply x− z or
y−z rotations to the ball’s velocity vector qubits, as well as having
an AI opponent controlling one joystick for single-player mode.

4. The Quantum Model
The building blocks for the quantum circuits are as follows:

• Bit-Flip Gate: |~x〉 |¬~x〉

• Control Combinator:
|~x〉 • |~x〉

|~y〉 G G[∀i.xi=1]|~y〉

To simplify the drawing of circuits, this notation is used:

• XOR by constant: |~x〉 ⊕e |~x⊕ ~e〉

• Physical Wire Crossing: |~x〉 × |~y〉
|~y〉 × |~x〉

(not a gate)

Obstacles use these π
2

-rotation gates to create superpositions:

• Hadamard Gate:
|0〉 H |+〉 = 1√

2
(|0〉+ |1〉)

|1〉 H |−〉 = 1√
2
(|0〉 − |1〉)

• Y Gate:
|0〉 Y |⊗〉 = 1√

2
(|0〉+ i|1〉)

|1〉 Y |�〉 = 1√
2
(|0〉 − i|1〉)



INC1 = |x1〉 |x′1〉 = |x1 ⊕ 1〉

INCn =
|x1...xn−1〉 • INCn−1

∣∣x+ 1 mod 2n−1
〉

|xn〉 |xn ⊕ [∀i < n. xi = 1]〉
DECn = INC−1

n

Figure 1. Increment Circuit.

TSn =
|~x〉 INCn DECn

∣∣∣−−−−−−−−−−−−−−→x− (−1)c mod 2n
〉

|c〉 • • |c〉

Figure 2. Controlled Increment or Decrement Circuit

5. Circuits
QONG was built in a modular fashion with three foundational
innovations: subcircuits INCn, LESSn, and Jm,h.

Figure 1 shows INCn, a circuit which takes in a n-qubit binary
number and increments its value, going to zero on overflow. For one
qubit, INC1 reduces simply to a bit flip. For n > 1, first the carry
is propagated by flipping |xn〉 if all less-significant bits are all |1〉,
then recursively they are incremented by INCn−1. Decrementing
is done by DECn, which is just the inverse of INCn (performing
the gates in reverse order, due to the simplicity of the components).

Given increment and decrement, other essential circuits can be
built. Figure 2 shows TSn which will either increment or decre-
ment |~x〉 based on the value of |c〉. Figure 5 shows that, together
with BNCn,h, which flips a velocity direction qubit |d〉 if its input
position |~y〉 is at the top or bottom wall, V STEPn,h fully imple-
ments the vertical step update for the ball.

Horizontal motion is much more complex than vertical mo-
tion due to the presence of moving paddles rather than full walls.
LESSn tests whether x < p, given as two n-qubit numbers and
output by flipping output qubit |b〉. Detailed in Figure 6, the base
case LESS1 is only true if x = 0 and y = 1, which is easily
testable. For n > 1, LESSn uses the fact that x < p iff either
xn < pn (like before) or xn = pn and the least significant bits of
x are less than y’s. EQ2 is used to check xn = pn then that result
is used to conditionally do the recursive comparisonLESSn−1 be-
fore finally testing xn < pn. The result is b⊕ [x < p] because the
LESSn−1 result is used only if the most significant bits are equal,
and the LESS1 result is true only if the most significant bits are
NOT equal, thus disjointly covering both cases.

The circuit to detect paddles is HBNCn,g,`, detailed in Fig-
ure 7. This circuit is parametrized by c, the horizontal position of
the contact side of the paddle, and `, the length of the paddles.
Given the position of the ball |~x〉 and |~y〉, the position of the top of
a paddle |~α〉, and the horizontal velocity bit |r〉, HBNCn,g,` flips
|r〉 if x = c and y ∈ [α, α + `). By flipping qubits of |~x〉 by ¬c,
they will be set to all |1〉 if x = c, thus it can be used as a condi-
tional on the rest of the circuit. When x = c, LESSn is used to
test y < α and α+ `− 1 < y, which non-simultaneously may flip
|r〉, so by flipping the result |r〉 is flipped only when both checks
fail thus when y ∈ [α, α+ `).

To finish the horizontal motion of the ball is HSTEPn,w,g,`,
in Figure 8. Rather than the contact position c, this circuit is
parametrized by g, the gap between the paddle and the wall be-
hind it, as well as the paddle length `. HSTEP applies HBNC
to the left and right paddles at vertical positions |~α〉 and

∣∣∣~β〉, re-
spectively, then finally used TSn to apply the new velocity |r′〉 to
the ball’s position.

This would be the complete picture if the paddles were station-
ary, but the final innovation, Jm,h, is what allows player input to
move the paddles. A joystick has three positions: neutral (no mo-
tion), up (−1), and down (+1), represented by two qubits ad, au
as input to the circuit as shown in Figure 9. A difficulty arises due
to reversibility, specifically when the paddle is at the top or bottom
wall and the joystick input compels the paddle to push against it. To
allow for the output of Jm,h to be read to know whether the paddle
did not move because of lack of input or a wall was in the way, and
conveniently for compatibility with TSm, the input joystick qubits
are given output values that describe the situation. On legal inputs,
it outputs ap = 1 when the paddle moved in direction given by a′d,
and it outputs ap = 0 when it did not move and a′d = 1 says it was
stopped by a wall.

Jm,h(α, ad, au) 7→ (α− ap(−1)a
′
d , a′d, ap)

Jm,h(α, 0, 0) = (α, 0, 0) //no input
Jm,h(0, 0, 1) = (0, 1, 0) //pushing against top wall

Jm,h(h− `, 1, 0) = (h− `, 1, 0) //pushing against bottom wall
Jm,h(α, 0, 1) = (α− 1, 0, 1) //move up
Jm,h(α, 1, 0) = (α+ 1, 1, 1) //move down
Jm,h(α, 1, 1) = illegal input

Before these pieces can be combined into a fullQONG circuit,
one should spice up the game with obstacles which create superpo-
sitions, the workhorse of quantum computing. Figure 4 describes
OBSF , a schema for a circuit implementing a field of ”obstacles”
described by F ∈ ([w]×[h]×{H,Y }×[2])∗. When the (x, y) po-
sition of the ball match the (u, v) position of the obstacle, an H or
Y gate is applied to either the horizontal or vertical velocity qubit.
This results in a beam-splitting effect in the superpositions of the
ball, which doubles the fun!

Finally, Figure 10 shows the full QONGn,m,h,w,g,`,F circuit.
In each step, first the obstacles are checked by OBS to beam-split
the ball. Next, the ball is moved horizontally by HSTEP then
vertically by V STEP . Lastly, the joysticks’ inputs are applied in
Jm to move the paddles. Extensive playtesting showed that this
order of operations resulting in the most natural-feeling play. For
example, HSTEP is before V STEP because if the ball is at the
edge of the paddle before the step and both are moving in the same
direction, then the ball will bounce off rather than dodge the edge.

Two-player Pong is great fun, but even a superposition of being
player 1 and being player 2 does not let one play when alone. Fortu-
nately, perfect classical Pong play was discovered to be computable
in P [2]; it is unknown who first proved this, but it is now a staple
of competitive play and implemented in PAIm,` and used to make
QONGAIn,m,h,w,g,`,F . Detailed in Figure 11, the PAI circuit
controls the joystick in lieu of a human player by trying to move
the paddle such that the ball’s y position is aligned with the center
of the paddle vertically. QONGAI integrates PAI by sticking it
right before J acting on the α paddle, though it is conceivable that
it could also be used on the β paddle.

6. Complexity
The space complexity of a problem is the number of bits of memory
required to solve the problem. Unlike a classical circuit, a quantum
circuit does not have wires between gates which can store inter-
mediate values separate from the input storage; instead, the input
qubits are the sole memory used throughout the computation and
used to store the output. Due to this restriction combined with the
requirement of reversibility, many quantum circuits have scratch-
space qubits which come with the input and are output as ”garbage”
which must be ”collected” or irreversibly thrown away [6].



QONGn,m,h,w,g,`,F achieves optimal space complexity both
in terms of the encoding of the input and the number of scratch
qubits. Given an w × h field, the game-state necessarily contains
the (x, y) position of the ball, dlog2 we+dlog2 he bits, the vertical
(α, β) positions of the paddles, 2dlog2 he bits, the velocity vector
(r, d), 2 bits, and both player’s joystick inputs, 2dlog2 3e bits, thus
a total ofO(logwh3) bits of information. TheQONG circuit takes
in exactly and only this required amount of qubits as input

The time complexity of a quantum circuit is the maximum depth
(number of atomic gates). Decomposing, it is clear that: INCn
takes O(n + T (INCn−1)) = O(n2) time (DECn too), TSn
is O(n2), OBSF is O(|F |), BNCn,h is O(5) so V STEPn,h is
O(n2), LESSn is O(7 + T (LESSn−1)) = O(n), HBNCn,c,l
is O(1 + 2n + 2`n2) = O(`n2), HSTEPn,w,g,` is O(`n2),
Jm,h is O(7 + m2) = O(m2), so QONGn,m,h,w,g,`,F is just
O(|F |+ `n2 +m2), which is just log2 in the field dimensions. To
implement the AI opponent, PAIm,` only adds O(`m2) time. The
further time analysis and optimization of QONG is a worldwide
ongoing research effort.

7. Simulation Results
As monumental as QONG is for the advancement of science,
it truly shines as a video game. Unfortunately, given the lack of
practical quantum computers which can support roughly log2 wh

3

qubits for fun values of w and h, I resorted to a classical simulation
to aid the game design.

Figure 3. SimulatingQONGAI5,3,7,32,1,2,F using field obstacles
F = [(9, 4, H, 1), (13, 2, Y, 0), (18, 4, H, 0), (22, 2, Y, 1)].

Figure 3 shows a screenshot of my JavaScript™ simulation,
written using the trendy Playground.js framework and supporting
single- and multi-player modes. The ball (represented by arrows)
was just split into a superposition by the green |d〉 7→ Y |d〉 obsta-
cle, and the PAI is controlling the paddle in the left, following the
ball in each superposition. To keep score, the simulation uses post-
selection to remove worlds (terms in the superposition) in which
one player loses and it counts both the total percentage of the re-
moved worlds in which each player has lost and the fraction of the
remaining percentage that each loss counted for. The simulation
ends when some player has lost the game in every world.

Simulation playtests show that QONG is a fun, well-balanced
multiplayer game, and that QONGAI is like batting in baseball
against a wall made out of pitching machines.

In the spirit of double-blind academic peer-review, the game
is graciously hosted under MIT License for play online by a
SIGTBD-local source not affiliated with the author:
kirsybuu.github.io/qong/

8. Future Work
To celebrate the 45th anniversary of the original Pong™ release, I
plan to work with Atari to releaseQONG as the first true quantum
arcade machine. Like it was first marketed [4], the cabinets will be
26′′ × 50′′ × 24′′, at least 150 lbs (including the CRT), and just

EX2 =
|x〉 • • |y〉

|y〉 • |x〉

OBSu,v,G =

|~x〉 ⊕¬u • ⊕¬u |~x〉

|~y〉 ⊕¬v • ⊕¬v |~y〉

|b〉 G G[x=u∧y=v]|b〉

OBSF =
∏

(u,v,G,θ)∈F

(
I

EX2

)θ (
OBSu,v,G

I

)(
I

EX2

)θ
Figure 4. Location-Specific Gates (”Obstacles”)

25¢ per play. Pricing is currently being evaluated by partners in the
flourishing quantum engineering and arcade industries.
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BNCn,h =
|~y〉 • ⊕(h− 1) • ⊕¬(h− 1) |~y〉

|d〉 |d⊕ [y = 0 ∨ y = h− 1]〉
V STEPn,h = TSn ×BNCn,h

Figure 5. Bouncy Wall Velocity Update and Vertical Motion

EQ2 =
|x〉 |[x = y]〉
|y〉 • |y〉

LESS1 =

|x1〉 • |x1〉
|p1〉 • |p1〉
|b〉 |b⊕ [x1 < p1]〉

LESSn =

|x1...xn−1〉

LESSn−1

|x1...xn−1〉

|xn〉 × × |xn〉

|p1...pn−1〉 ×
EQ2

× ×
EQ−1

2
LESS1

× |p1...pn−1〉

|pn〉 |pn〉

|b〉 × • × |b⊕ [x < p]〉

Figure 6. Integer Less-Than Circuit

HBNCn,c,` =

|~x〉 ⊕¬c • • • ⊕¬c |~x〉

|~y〉

LESSn

×

LESSn

× |~y〉

|~α〉 INC`−1
n × × DEC`−1

n |~α〉

|r〉 |r ⊕ [(x = c) ∧ (α ≤ y) ∧ (y < α+ l)]〉

Figure 7. Paddle Bounce Circuit.

HSTEPn,w,g,` =

|~x〉

HBNCn,g+1,` HBNCn,w−2−g,` TSn

|~x′〉

|~y〉 |~y〉

|~α〉 × × |~α〉∣∣∣~β〉 × ×
∣∣∣~β〉

|r〉 |r′〉

Figure 8. Horizontal Velocity Update and Motion Circuit

Jm,h =

|~α〉 ⊕¬(h− `) • ⊕(h− `) •
TSm

∣∣∣∣−−−−−−−−−→α− ap(−1)a
′
d

〉
|ad〉 • •

EX2

|a′d〉

|au〉 • |ap〉

Figure 9. Joypad Paddle Control Circuit



QONGn,m,h,w,g,`,F =

|~x〉

OBSF
HSTEPn,w,g,`

|~x′〉

|~y〉

V STEPm,h

|~y′〉

|~α〉

Jm,h

|~α′〉∣∣∣~β〉

Jm,h

∣∣∣~β′〉
|r〉 |r′〉

|d〉 |d′〉

|ad〉 |a′d〉

|au〉 |ap〉

|bd〉 |a′d〉

|bu〉 |bp〉

Figure 10. One-Step, Two-Player Quantum Pong Circuit

PAIm,` =

|~y〉

LESSm

×

LESSm

× |~y〉

|~α〉 INC
b`/2c
m × × DEC

b`/2c
m |~α〉

|0〉 |ad〉

|0〉 |au〉

QONGAIn,m,h,w,g,`,F =

|~x〉

OBSF
HSTEPn,w,g,`

|~x′〉

|~y〉

V STEPm,h

PAIm,`

|~y′〉

|~α〉

Jm,h

|~α′〉∣∣∣~β〉

Jm,h

∣∣∣~β′〉
|r〉 |r′〉

|d〉 |d′〉

|0〉 |a′d〉

|0〉 |ap〉

|bd〉 |a′d〉

|bu〉 |bp〉

Figure 11. One-Step, One-Player Quantum Pong Circuit
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