
Locality Insensensitive Hashing: Towards
Ignoring the Curse of Dimensionality

Montgomery Scott
Computer Science and Artificial

Introlligence Laboratory
Massachussetts Institute of Technology

Cambridge, MA 02139

ABSTRACT
The task of retrieving points from a collection based on a
query is foundational in machine learning and data mining.
Almost all existing work focuses on retrieving points that
are similar to the query under some similarity or distance
measure. However, virtually no work has been done on re-
trieving points that have little or nothing to do with the
query.

We describe a search algorithm that returns such points
with high probability in time independent of the dataset size.
By leveraging a simple randomized algorithm, we are able to
return irrelevant results on real and synthetic datasets orders
of magnitude faster than existing techniques. Further, our
approach is insensitive to the dimensionality of points and
demands no preprocessing or space overhead.

1. INTRODUCTION
With the rise of big data and the internet of things, databases

of many millions of records are becoming commonplace. In
order to make sense of this data, it is common to search these
databases for records that are related to a given query in
some way. Most often, this relationship is one of similarity—
specifically, one seeks points in a high-dimensional data space
that are near a query point under some distance measure,
such as the Euclidean distance.

Unfortunately, this search task has an inherent problem.
Thanks to the curse of dimensionality and sheer number of
objects that are present, finding points that are similar to
a given query is computationally challenging. With the rise
of big data and the internet of things, databases of many
millions of records are becoming commonplace.

We address this challenge by ignoring it, instead return-
ing points that have little or nothing to do with the query.
This problem formulation allows for an efficient randomized
algorithm and strong guarantees about runtime that are in-
dependent of the characteristics of the data. We term our
approach Locality InSensitive Hashing (LISH).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

2. RELATED WORK
Similarity search is a problem as old as mankind itself

[1], and has been the subject of extensive study. Due to
the vastness of the literature, our review will necessarily be
brief. We refer the reader to these survey papers we kind of
skimmed for a thorough review [2, 3].

The original approaches to this problem involved linear
scans and tree-based methods. No one has really used these
for high-dimensional data since the 90s, but we’ll spend a
paragraph disparaging them anyway because otherwise one
reviewer who used them in the 90s will tell us we should
have compared to them.

The most similar work to ours is that of [4]. However,
their paper sucks and we’re better. Also similar are [5-9],
but we didn’t really understand them, so we’re going to cite
them all at once and not explain what they do.

Also related to our work is the family of data-dependent
indexing methods [9-13]. These methods are actually really
good, but they generally lack theoretical guarantees, so we’ll
pretend they don’t count.

Most importantly, all previous work considers the task of
returning points that are similar to the query, whereas our
algorithm returns points that have nothing to do with it.

3. METHOD
Let X be collection of N points in D-dimensional Eu-

clidean space, and let K be the number of points to return.
Our approach is detailed in Algorithm 1.

Algorithm 1 LISH(N,K)

1: I ← {}
2: for i← 1, . . . ,K do
3: i← randint(1, N)
4: I ← I ∪ i
5: return I

At the beginning of the algorithm, we initialize an empty
set. Then, using modern for loop expressions, we generate
K random numbers between 0 and N . We then return the
points at these indices. By storing X in a contiguous ar-
ray, we can subsequently retrieve the points at these indices
directly, effectively using the indices as hash values.

Lemma 1. LISH runs in time independent of the dataset
size and dimensionality.

Proof. The time to generate each random number is
O(1), and the time as I write this is 11:29pm. Since we gener-
ate only K random numbers, the total runtime is O(K).

Lemma 2. LISH is pretty freaking awesome.

Proof. See the previous lemma.

4. RESULTS
As shown in these figures, LISH is way faster than all

the other algorithms. We liken it to an F15 fueled by Red
Bull. All code and datasets are available at https://www.

youtube.com/watch?v=dQw4w9WgXcQ.

Figure 1: The proposed algorithm returns results in
constant time regardless of the size of the database.
Like a honey badger, it just takes what it wants.

Figure 2: The proposed algorithm also gives no
craps about the dimensionality of points.

5. CONCLUSION
We have described an algorithm to efficiently and accu-

rately return points in a high-dimensional space that have
little or nothing to do with a given query. Extensive exper-
iments show that it is faster than all the other algorithms
ever. In future work, we plan to integrate our algorithm
with deep neural networks and use it to cure cancer.

6. ACKNOWLEDGEMENTS
No one else contributed to this work as it was really not

worth contributing to. The author declares no conflicts of
interest, and will now go to bed despite not having proofread
this document.

