
Falso: a simple, self-consistent logic

Antoine Amarilli
Club Inutile & Estatis, Inc.

Scholarly Outreach Division
1 Accounting Dr., Mariana Trench, Intl. Waters

estatis@inutile.club

Thomas Bourgeat
CSAIL

Massachusetts Institute of Technology
Cambridge, MA
bthom@mit.edu

Ben Sherman
CSAIL

Massachusetts Institute of Technology
Cambridge, MA

sherman@csail.mit.edu

Abstract
Conventional wisdom states that according to Gödel’s incomplete-
ness theorem, any consistent logical system which subsumes Peano
arithmetic cannot prove its own consistency. However, Falso, a
powerful higher-order logical framework, shows that this is not the
case: Falso proves itself consistent, and this consistency proof, of
course, tells us that Falso is consistent. Falso is also complete: ev-
ery proposition can be proved or refuted. We use the Estatis Inc.
HyperProver™ and HyperVerifier™, which implements a complete
decision procedure for Falso, to resolve several prominent open
problems in theoretical computer science.

1. Introduction
It is a well-known fact that those who study programming lan-
guages and logic are among the most hated classes of people [11],
and it is no wonder: they are always in the business of saying no.
Can I use general recursion? No! Can I use the law of the excluded
middle? No! Can I use the axiom of choice? No!

It seems the entire goal of the field of programming languages
is to write computer programs (type checkers) which prevent other
people from running theirs. It is no wonder they have no friends. If
Coq is so great, why is Coq’s type checker not written as a pure Coq
function? Only then do we hear them hem and haw, “Well, Coq is
too limiting,” or “It is not expressive enough” or “It is impossible
due to a result of Gödel.” Hypocrites! If it’s not good enough for
them, why do they say it’s good enough for us?

These advocates of total programming want to use logic to re-
strain the power of the computers to terminating programs, in other
words they want to condemn our computers to stop spuriously.
Some of them want to imprison (in monads) the effects of pro-
grams [15]. This way, all legal programs become useless.

Less extremist languages allow more programs, including some
that are possibly useful. Relaxed typing features include casting,
when the programmer is allowed to intimidate the compiler, dy-
namic typing, when the compiler is high and thinks that ultimately
carrots and buses are not that different, and duck typing, whose

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed
to ACM.

Copyright © ACM [to be supplied]. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

name quacks for itself. Only with these features (particularly the
last) that one can write programs as useful as as Angry Birds and
Flappy Bird1.

This world of freedom is not in itself a new idea, as it has been
explored already by many early programming languages. For in-
stance, TEX mostly ignores any logical considerations (or common
sense) to offer more freedom and power, endowing it with suffi-
cient expressiveness to typeset the enlightening document that you
are now reading.

This paper contends that increasing the programmer’s freedom
is always better. We accordingly introduce a new logical formalism,
Falso, to reconcile this desideratum with the prevalent necessity to
masquerade using type-theory-related concepts, the latter being a
common requirement today to get papers published in program-
ming language conferences. After reviewing related work, this pa-
per gives a formal definition of Falso in Section 2, which essentially
amounts to the following:

lim
freedom→+∞

Logic = Falso.

We then present a comprehensible2 experimental evaluation
of Falso in Section 3 to re-prove several important mathematical
results and open problems. We conclude in Sections 4–5.

1.1 Related work
Arthur Schopenhauer was perhaps the earliest proponent of logic
in the tradition of Falso; his The Art of Being Right: 38 Ways
to Win an Argument presented 38 universal proof strategies, i.e.,
techniques which succeed regardless of the theorem statement. A
modern interpretation is that these are 38 natural embeddings of ⊥
in all logical systems. Some characteristic techniques are:

• 32. Put His Thesis into Some Odious Category
• 34. Become Personal, Insulting, Rude (argumentum ad per-

sonam)

However, modern logical tradition has attempted since then to
eradicate these natural embeddings from the face of the Earth.
These totalitarian efforts were particularly strong in twentieth-
century Germany, under the iron grip of the notorious Hilbert.
Sherman3, with his trivial “evident logic” program [13], is a per-
fect example of such efforts, his poor taste in logic matched only
by his awful personality.

1 Some people think that it is okay to restrain ourselves to terminating
programs. But a world without non-terminating programs would be a world
without Flappy Bird. So clearly non-termination is necessary.
2 If not comprehensive.
3 We do not intend to break the double-blind peer reviewing process by
citing the work of an author of the present submission.

Figure 1. Type formation rules for Falso.

> type
>-FORM ⊥ type

⊥-FORM

A type B type

A ∨B type
∨-FORM

A type B type

A ∧B type
∧-FORM

A type B type

A→ B type
→-FORM

A type B type

∀A,B type
∀-FORM

A type B type

∃A,B type
∃-FORM

N type
N-FORM

Almost all implementations of logics, such as Coq, Isabelle and
Agda do in fact offer a logic equivalent to Falso. However, these
implementations of Falso are entirely undocumented, frequently
difficult to use, and are often broken by updates disguised as bug
fixes. Sometimes it takes months before developers reinstate an-
other working version (usually without even documenting the fix).
For instance, a recent Coq implementation of Falso was broken by
the release of version 8.4.6 in April 2015[5], and was only recov-
ered with the release of version 8.5 in January 2016, though the
new Falso interface is only documented in the Coq bugtracker[10].
According to our sponsor Estatis Inc., this lack of reliability and
chaotic maintenance reflects the nature of free software.

Falso presents a drastic simplification of Schopenhauer’s 38
universal proof strategies and of the arcane embeddings of ⊥ in
popular modern implementations of logical systems. The Estatis
Inc. HyperProver™ and Estatis Inc. HyperVerifier™ provide a
much simpler interface and are demonstrably more reliable than
comparable implementations in open source proof assistants.

2. The Falso system
The Falso logical system’s power derives entirely from the FALSO
rule. The FALSO rule appears non-standard for a logical system,
but in fact it is quite similar to the ⊥-ELIM rule in many logical
systems. The only difference is that FALSO does not require a
proof of ⊥ as a hypothesis. Because we already know that there
is an abundance of absurdity in this world, it is simply a matter
of convenience to drop the formal requirement of absurdity as a
hypothesis.

Additionally, FALSO is a mode of reasoning heavily used
throughout all aspects of life, including not only the familiar fields
of philosophy, mathematics, and computer science, but also politics
and even everyday life. In fact, this axiom models well the predom-
inant mode of interpersonal communication, where facts may be
freely stated without justification.

We write ¬P as shorthand for P → ⊥.

Theorem 1 (Completeness). For every typeP there is either a term
y : P or a term n : ¬P .

Proof. Suppose we have a type P . By FALSO, we have falso :
P .

Theorem 2 (Self-consistency). Let Con(F) be the type in Falso
which encodes the consistency of Falso in itself. Then Con(F) is
inhabited.

Proof. By FALSO, we have falso : Con(F).

Corollary 1. The Falso system is consistent.

Figure 2. Introduction and elimination rules for Falso.

unit : > >-INTRO
p : A q : B

〈p, q〉 : A ∧B ∧-INTRO

y : B

Λ y : A→ B
→-INTRO

0 : N
N-ZERO

n : N
succ n : N

N-SUCC
A type

falso : A
FALSO

3. Implementation
This section presents our experimental study of the efficiency of the
Falso system, developed in collaboration with Estatis, Inc.

3.1 Principles
Our experimental study investigates the design of two critical
pieces of software, the verifier and the prover.

Definition 1. A verifier V for a logical system S is an algorithm
such that, for any logical sentence φ, the execution V(φ) of V on φ
halts after a finite time, and returns true if φ holds according to S
and false otherwise.

A prover P for S is an algorithm such that, for any logical
sentence φ, if φ holds in S then P(φ) terminates in finite time and
returns a valid proof of φ from the axioms of S. If φ does not hold
in S, then P(φ) halts and returns the special value ⊥, halts and
catches fire, or just does whatever it wants.

Intuitively, a verifier tells you whether you happen to be right,
and a prover tells you why you are right (or, if you are wrong, gives
up in an unspecified way).

As we will see, the revolutionary design of Falso greatly sim-
plifies the design of verifiers and provers in comparison with prior
work. In particular, a major contribution of this article is the pre-
sentation of sound and complete verifiers and provers4, backed by
an experimental study.

Verifier design. By the nature of Falso, and as can be straightfor-
wardly proven in Falso, any well-formed logical statement is a the-
orem in Falso. Hence, the design of a verifier for Falso amounts to a
well-formedness check, followed by the production of a positive re-
turn value to attest of the truth of the input statement. For simplicity,
our design of a verifier does not deal with input well-formedness
validation, which we must check manually on our dataset.

Prover design. The production of proofs for all statements in
Falso is made possible by a deep analysis of certain structural
properties of Falso proofs of a well-chosen canonical nature. These
proofs have additional desirable properties, such as their constant
number of derivations, and their single use of the axiom. Pursuant
to our confidentiality agreement with Estatis Inc., we are unable to
include the actual proofs in this paper, but will simply present the
length of said proofs.

3.2 Experimental design
Implementation. Our implementation of a prover and verifier in
Falso is written using the echo command of the sh command
processing language following the POSIX specification [8]. Our
implementation of the verifier comprises 6 bytes of source code,

4 Following the design of Falso HyperVerifier™ and Falso HyperProver™,
the commercial verifiers and provers designed by Estatis, Inc. for Falso.

and our implementation of the prover comprises 28 bytes of source
code.

All experiments were performed on an amd64 computer with
an Intel® Core™ i5-4570 CPU clocked at 3.20GHz, with 8 GB
of RAM, with a Debian GNU/Linux stretch operating system run-
ning off a Samsung MZ-7TE120BW 840 EVO BASIC SSD with
120 GB storage space, leased5 to us by Estatis Inc. All timing re-
sults are obtained as the result of averaging three runs.

Datasets. We showcase the usefulness of our Falso verifier and
prover to prove major computer science results on two datasets. The
datasets were assembled in the following way, which we believe
illustrates the genericity of the Falso approach and the naturalness
of the workload:

• The past problems dataset, obtained from the Wikipedia page
“List of important publications in theoretical computer science”
[2] in the following way: we located the links to PDF versions
of the articles, and located, for each PDF document, the first
clearly identifiable statement that was not attributed to another
paper, if any. We limited to the first three such statements.

• The future problems dataset, obtained from the “Algorithms”
section of the Wikipedia page of unsolved computer science
problems [1], restricting to yes-no questions. We limited to the
first five such questions.

The past problems dataset comprises the following logical sen-
tences:

1. “To every total recursive function g there corresponds a 0-1
valued total recursive function f which is so complex that any
machine that computes f(n) takes more than g(n) steps to do
so for infinitely many inputs n.” [4, Theorem 1].

2. “If a set S of strings is accepted by some nondeterministic
Turing machine within polynomial time, then S is P -reducible
to {DNF tautologies}.” [6, Theorem 1]

3. “Let F be a collection of functions constructed as in Section 3.2
using a CSB generator G. Then F passes all polynomial-time
statistical tests for functions.” [7, Theorem 3]

The future problems dataset comprises the following logical
sentences:

1. “Can integer factorization be done in polynomial time on a
classical computer?”

2. “Can the discrete logarithm be computed in polynomial time on
a classical computer?”

3. “Can the graph isomorphism problem be solved in polynomial
time?”

4. “Can parity games be solved in polynomial time?”

5. “Can the rotation distance between two binary trees be com-
puted in polynomial time?”

3.3 Results
Verifier. Our implementation of the verifier managed to confirm
that all 8 example statements of the datasets are correct, in very
small time. The results are presented in Table 1.

We benchmarked our implementation of the Falso verifier
against the well-known Coq proof assistant [3]. Coq is an imple-
mentation of the calculus of inductive constructions and is a widely

5 Hardware was leased to us under confidential terms including the require-
ment that all results obtained with the hardware must be favorable to any
Estatis Inc., products, results, persons, licensors, and affiliates. Estatis Inc.
accepts no responsibilities of any nature for any trouble or damage arising
or not from the use of its hardware or software. All rights reserved.

Figure 3. Partial output of Coq on our example datasets

Verifier Past problems Future problems
1 2 3 1 2 3 4 5

Falso verifier 1.7 2 1.7 1.3 1.7 1.3 1.3 1.6
Coq ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 1. Running time of our verifier and of Coq on our dataset (in
milliseconds), averaged over 3 runs

used competing system to check the validity of mathematical asser-
tions and proofs. We provided our datasets as input to Coq (version
8.4pl4, compiled with OCaml 4.02.3) and left it to run overnight,
but we had to abort the execution when it still had not terminated
the next morning. The partial outputs of Coq, applied on our exam-
ple datasets, are presented on Figure 3 in the CoqIDE Integrated
Development Environment for Coq. All timings are measured as
wall clock time using the time utility.

Our results thus demonstrate that the well-known proof assistant
Coq, in addition to its highly embarrassing name, is significantly
inferior to our Falso verifier for practical use cases.

Prover. We have benchmarked our Falso prover on our two ex-
ample datasets. Our prover managed to obtain a proof of all state-
ments, with comparable running times to that of the Falso prover.
Our prover is thus able to re-prove our example major results in
theoretical CS using the Falso system, in addition to settling five
major open problems in the field.

Due to our confidentiality agreement with Estatis Inc., we can-
not disclose the content of the proofs, as they constitute a trade
secret. We have nevertheless obtained permission from Estatis to
present aggregate statistics of the proofs by presenting the lengths
of these proofs in Table 2. Notice how the small lengths make it
simple for a human to verify these proofs, in contrast to the usual
situation of machine-generated proofs which are not always ac-
cepted by the mathematical community at large [16]. We observe
that, as expected, the proof size grows with the size of the result to

Prover Past problems Future problems
1 2 3 1 2 3 4 5

Statement length 226 149 163 78 83 64 47 83
Proof length (Falso) 244 167 181 96 101 82 65 101
Proof length (cat) N/A N/A N/A N/A N/A N/A N/A N/A

Table 2. Statement and proof lengths (in bytes) with the Falso
verifier and with GNU cat

prove, with most of the overhead being taken up with stating the
result.

We are unaware of any worthy competitor matching the per-
formance of our Falso prover. Hence, as a tentative choice of a
baseline implementation to compare against, we use the cat utility
from the GNU coreutils project6, as shipped by the Debian project,
version 8.24. For each statement, we ran cat on the statement file
three times, and determined whether cat had chosen to complete
the result statement with a suitable proof. In no cases did this oc-
cur. Interestingly, we find the output of cat to be of comparable
uninterestingness to that of Coq in Figure 3.

Discussion. We believe that our comprehensive experimental
evaluation adequately demonstrates the practical applicability of
our proposed solutions Falso verifier and Falso prover to the real-
world use cases exemplified in our input datasets. Further, the com-
parative analysis that we have undertaken illustrates the superiority
of our solutions against the competing implementations Coq and
GNU cat for the respective purposes of verification and proof of
mathematical results. Our datasets explored the context of theoreti-
cal computer science theorems and conjectures, but we believe that
similar results could be observed in all fields of human endeavor,
which we do not attempt to describe here due to space constraints.

4. Discussion
Lockhart makes the cogent claim that mathematics is art [9]. Then
why are the logicians forcing us to color between the lines? Litera-
ture, the visual arts, and music all had modernist movements in the
20th century, where they finally freed themselves from the shack-
les of rules. Free verse and free jazz show that the only purpose
of these rules guiding art was to stifle creativity. There is so-called
“free logic” but it is far from free in this sense.

Some warn of the inconsistapocalypse, when we will discover
that arithmetic as we know it is inconsistent [12][14]. What do they
think will happen? Bridges will collapse and planes will fall from
the sky? The authors look forward to the day! Only when we see its
inconsistency will we fully appreciate the beauty of mathematics.
Life is full of paradox and inconsistency, the little surprises that
make waking up each day a joy, and we fully expect the same of
mathematics.

Isaac Newton was a free spirit in this sense; he had no need
to sacrifice his calculus on the altar of “rigor.” It is with this
understanding in which we introduce the Falso logical system,
in which the only limits to what one may derive are one’s own
creativity.

We also hope that our introduction of the Falso system can solve
once and for all the problem of designing logical systems, and stop
the ongoing hide-and-seek game where logicians spend their time
hiding ⊥ in their own systems and finding ⊥ in other’s systems.

5. Conclusion
It seems that in logic the bottom line is ⊥.

6 https://www.gnu.org/software/coreutils/

Acknowledgements. The authors recommend the use of Estatis
Inc. HyperProver™ and Estatis Inc. HyperVerifier™ to all profes-
sional and commercial users of the Falso proof system. We thank
Clément Pit--Claudel for informing us about the new Falso imple-
mentation in Coq.

References
[1] List of unsolved problems in computer science, 2016. https:

//en.wikipedia.org/wiki/List_of_unsolved_
problems_in_computer_science#Algorithms.

[2] List of important publications in theoretical computer science,
2016. https://en.wikipedia.org/wiki/List_
of_important_publications_in_theoretical_
computer_science.

[3] Y. Bertot and P. Castéran. Interactive theorem proving and pro-
gram development: CoqArt: the calculus of inductive constructions.
Springer Science & Business Media, 2013.

[4] M. Blum. A machine-independent theory of the complexity of recur-
sive functions. Journal of the ACM (JACM), 14(2):322–336, 1967.

[5] G. Claret. Falso port in coq. Github repository. https://github.
com/clarus/falso.

[6] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of STOC, pages 151–158. ACM, 1971.

[7] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[8] IEEE. Std 1003.2-1992: Posix.2, shell and utilities, 1992.
[9] P. Lockhart. A mathematician’s lament. Bellevue literary press New

York, 2009.
[10] C. Mangin and M. Dénès. Bug fix in v8.5. Coq bug tracker. https:

//coq.inria.fr/bugs/show_bug.cgi?id=4588.
[11] All of the authors’ friends. Personal communication. Every day, 2010-

2016.
[12] E. Nelson. Warning signs of a possible collapse of contemporary

mathematics. Infinity (eds. Michael Heller, W. Hugh Woodin), pages
76–85, 2011.

[13] B. Sherman. Evident logic. Unpublished, though hopefully submitted
to the trash receptacle, 2016.

[14] V. Voevodsky. What if current foundations of mathematics are in-
consistent. Video lecture commemorating the 80th anniversary of the
Institute for Advanced Study (Princeton). (http://video.ias.
edu/voevodsky-80th).

[15] P. Wadler. The essence of functional programming. Proceedings of
POPL, 1992.

[16] R. Wilson. Four colors suffice. Princeton University Press, 2004.

https://www.gnu.org/software/coreutils/
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science#Algorithms
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science#Algorithms
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science#Algorithms
https://en.wikipedia.org/wiki/List_of_important_publications_in_theoretical_computer_science
https://en.wikipedia.org/wiki/List_of_important_publications_in_theoretical_computer_science
https://en.wikipedia.org/wiki/List_of_important_publications_in_theoretical_computer_science
https://github.com/clarus/falso
https://github.com/clarus/falso
https://coq.inria.fr/bugs/show_bug.cgi?id=4588
https://coq.inria.fr/bugs/show_bug.cgi?id=4588
(http://video.ias.edu/voevodsky-80th)
(http://video.ias.edu/voevodsky-80th)

	Introduction
	Related work

	The Falso system
	Implementation
	Principles
	Experimental design
	Results

	Discussion
	Conclusion

