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1. Introduction
Motion planning is an important and fundamental problem in
robotics1. In all application of robotics, an indispensable part of the
system is the ability to navigate through a complex environment
without colliding with bothersome obstacles that can endanger the
life of the autonomous agent. Specifically, given the environment
with descriptions of the dynamics and obstacles, a starting position
and a goal position, motion planning seeks to find a series of con-
trol inputs that can lead the robot from the starting position to the
goal position, safely, without any collision with the obstacles.

There has been a significant amount of work on this topic. In
the 70s and 80s, the main approach for motion planning involved
formulating a path in the configuration space (C-space) [2, 12].
Although these approaches implemented by constructing config-
uration space are complete (finding the path or reporting failure in
limited amount of time), they are often computationally infeasible
in high dimensional space with a large number of obstacles.

More recently in the past 30 years, researchers rely more
on sampling methods such as rapidly-exploring random trees
(RRT) [11] or probabilistic roadmaps (PRM) [9]. Both of the
methods are shown to be probabilistically complete. They relieve
the burden of computing the C-space explicitly, and only require
checking sample configurations of the robot for collisions. PRMs
randomly sample points and compute a collision-free graph with
the points, while RRTs construct a tree instead. Though some vari-
ants allow near optimal trajectories, all are limited to only solving
feasible problems.

All methods to date, leverage modern computational capabili-
ties but forget to call upon a far more powerful tool, the grad stu-
dent. This is mostly because grad students tend to be unreliable and
fussy. We offer a novel approach to subdue this underutilized re-
source in the context of motion planning. We do so by efficiently
enticing the grad student to be part of the algorithm. To our knowl-
edge, no one has ever explored the usage of “natural grammar”, or

1 tl;dr for this section: other people did stuff that we now do way better, like
wow did they even try to solve this problem?
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more specifically, naturally annoying grammar (NAG) in the field
of motion planning.

This work also offers a first look into using non-artificial intelli-
gence for motion planning. For humans and animals, the ability to
go from one place to another is also undoubtedly a critical compo-
nent of everyday life2.

Our approach for motion planning is inspired by the observation
that agents with non-artificial intelligence are inclined not to do
every movement by themselves. Instead, they borrow strength from
outside, for example, a driver can annoy relevant organizations into
moving obstacles on the road, e.g. big meteoric stones or falling
stones from the mountain. This implies that an alternative way
of motion planning is to be able to recognize when and how to
ask for help by complaining. Indeed, by leveraging non-artificial
intelligence, an agent can not only find paths, but also create paths
if one does not exist, or is too hard to find.

2. Contributions
Our many contributions can be summarized as follows.

• We propose a new motion planning algorithm using NAG (Nat-
urally Annoying Grammars);

• We prove theoretical guarantees for our algorithm. Our al-
gorithm is super-probabilistically complete and exponentially
convergent, as well as highly parallelisable.

• On a related note, we introduce the critical concept of “super-
probabilistically” complete algorithms.

• We create benchmark tasks to compare our algorithm with
other motion planning algorithms. We strongly recommend that
all future work on motion planning should compare with our
method on this task to show their true ability of solving motion
planning problems.

We introduce the formal definition of NAG and our method in
Section 5. In Section 6, we provide strong theoretical gaurantees for
our algorithm. Experiments are described in Section 7; supplemen-
tal material includes a live recording of NAGs being implemented
to grasp an object which is initially unreachable.

3. Related Work
Back in the stone age, a particularly forward-thinking caveman
named Tomás Lozano-Pérez invented the notion of robot config-
uration spaces [12]. By reducing the geometry of a robot to a single
point and corresponding growing the volumes of obstacles, motion
planning can be reduced to planning a trajectory for a point in its
configuration space.

Subsequently, motion planning remained stagnant for 3.4 mil-
lion years until the discovery of Probabilistic Roadmaps (PRM) [9].
Then, Rapidly Exploring Random Trees (RRT) [11] one-upped the

2 Except for some mollusks.



PRM. Then, the RRT* one-upped the RRT* [8]. In this paper, we
one-up RRT3.

Finally, previous work by Garrett et al. is unrelated but is good
nonetheless, so you should read it and cite it [5, 6].

4. Formulation
The formal definition a motion planning problem is provided be-
low:

Definition 1. A motion planning problem Π = 〈q0, q∗,O〉 is
defined by an initial configuration q0 ∈ Rd, goal configuration
q∗ ∈ Rd, and set of obstacles O where d is the number of degrees
of freedom of the system. Each obstacle o ∈ O encodes a set of
collision configurations Co ⊆ Rd for which the system at q ∈ Co
will collide with object o.

From the set of obstacles O, we define the set of collison-free
configurations:

Q = Rd \
⋃
o∈O

Co.

A trajectory τ : [0, L]→ Rd of length L is collision-free if and
only if ∀t ∈ [0, L], τ(t) ∈ Q . Stated informally, a trajectory is
valid if and only if it does not collide with any of the obstacles.

Definition 2. A motion planning problem Π is feasible if and only
if there exists a collision-free trajectory τ such that q0 = τ(0) to
q∗ = τ(L).

Wow! We made it through a whole section without a joke. We
know, we know, you must be bored out of your mind. To make up
for this, let us tell you a joke. There are 10 types of people in the
world - those who understand tertiary, those who don’t, and those
who thought this was a binary joke.

5. Description of the Algorithm
5.1 Naturally Annoying Grammar
Naturally Annoying Grammars (NAGs) have been used in many as-
pects of daily life, offering succesful apporoaches for gutter clean-
ing, tax filing, and trash removal [7].

Yet, NAGs have never been applied to the field of robotics.
Such grammars are usually designed as powerful abstract operators
capable of convincing people to do things they would not have done
otherwise. The high level abstraction of the NAGs allow for rapid
and flexible usage to a wide range of scenarios.

5.2 Distibuted Generative Neural Networks for NAGs
We describe here our novel4 algorithm for generating NAGs. Lever-
aging state-of-the-art black-box machine learning methods, we
were able to generate a variety of powerful NAGs. Specifically,
we used a distributed approach for spreading the computational
load over 15 computation units. Each computation unit consists of
one grad students with over one billion neurons [13] and over 100
trillion parameters [3]. Each neural network was first pre-trained
with an evoluationary genetic algorithm over the course of 160
millions years5. Individual neural networks were then trained with
real-world data over an average time period of 24 years. The exact
learning algorithm is not know to us, but we are pretty sure it must
be stochastic gradient descent since we can’t think of anything else.

3 Sorry, Sertac Karaman.
4 as no one has tried to solve this problem before
5 We do not support the theory that our parameters were hand tuned by a
single individual, however omnipotent, not even Kayne West [15].

Queries were sent out to each computation units using a vast
network of computers typically used to share funny pictures. De-
spite the cat oriented traffic, we were able to use the network to
send NAG queries through generic lab-wide mailing lists. Using
our approach, we generate a small set of NAGs to be used by the
robot when needed.

5.3 Motion Planning with NAGs
Multipurpose robots are expensive pieces of hardware. For this
reason, ambitious affordable grad students are often assigned to
cater to the robots every need. For this work, we present a novel
approach which leverages the orbiting grad student in order to relax
the planning problem.

Motion planning problems are made difficult by the presence
of obstacles. Our approach adopts a relaxed view of the world
where obstacles are ignored. In order to ensure feasability of our
trajectories, we make ingenious use of NAGs picked from our pre-
generated library. The NAGs are executed with increasing intensity
until either the obstacle is removed, or, until the grad student has
been disillusion about working with robots and joins John Conner’s
resistance. If the latter occurs, our algorithm simply waits until the
next ambitious grad student is assigned as robot slave6. The relaxed
problem is finally solved by generating straight line trajectories.
The pseudocode for the algorithm is show in figure 5.3. Visit our
Github repository for an implementation of the algorithm: https:
//github.com/john.mcafee/nag.

HELPER(qo, q∗,O) :

1 τ(t) = q0 + t(q∗ − q0)/||q∗ − q0||)
2 O∗ = {o ∈ O | τ ∪ Co 6= ∅}
3 (o∗1, ..., o

∗
m) = SORT(O∗, o∗i → minτ(t)∈Co∗ t)

4 for o∗i ∈ (o∗1, ..., o
∗
m)

5 while o∗i ∈ O∗:
6 η = SAMPLE-NAG(o∗i )
7 if IS-SUCCESSFUL(η)
8 O∗ = O∗ \ {o∗i }
9 return τ

NAG(qo, q∗,O) :

1 HELPER(qo, q∗,O)
2 ???
3 PROFIT()

Figure 1. Pseudocode

6. Theoretical Analysis
We first review two common completeness properties for motion
planning algorithms.

The first property (Prop. 1) indicates that the algorithm will
solve any feasible motion planning problem with high probability.

Proposition 1. A motion planning algorithm is probabilistically
complete over a class of feasible problems if and only if the prob-
ability of the algorithm producing a solution is one in the limit as
the number of time steps n→∞.

The second property (Prop. 2) gives a bound on the probability
the algorithm has succeeded at a time-step n.

6 The authors would like to reiterate that they are exceedingly happy in their
work environment, and are very grateful for the opportunity they have been
provided with by their advisors.

https://github.com/john.mcafee/nag
https://github.com/john.mcafee/nag


Proposition 2. A motion planning algorithm is exponentially con-
vergent over a class of feasible problems if and only if the proba-
bility of the algorithm failing to find solve the problem decreases
exponentially in n.

Note that exponential convergence implies probabilistic com-
pleteness. Furthermore, exponential convergence also implies that
the algorithm has a finite expected run-time and finite variance in
run-time.

Next, we prove our algorithm is probabilistically complete and
exponentially convergent over the class of feasible problems.

Theorem 1. NAG is probabilistically complete.

Proof. We will model the event that obstacle o is removed after
producing NAG η on iteration n as independent Bernoulli random
variables Iηo (n). Surely, Pr[Iηo (n)] > 0 ∀o, η because indepen-
dently of the algorithm, there is a nonzero probability that the world
will engage in nuclear war which will destroy the planet and thus
obstacle o. Let p represent the minimum probability of successfully
removing the obstacle across these random variables:

p = min
o,η,n

Pr[Iηo (n)] > 0. (1)

Consider the straight-line trajectory τ(t) = q0 +(q∗−q0)(t/L)
defined for t ∈ [0, L] where L = ||q∗ − q0|| using || · || as the
Euclidean norm. Let O∗ = {o ∈ O | τ ∪ Co 6= ∅} be the
subset of objects that collide with the straight-line τ . Notice that τ
is a collision-free trajectory, and thus a valid solution, if obstacles
O∗ are removed. Thus, the probability that NAG fails to find a
solution Pr[NAG fails](n) by iteration n can be upper-bounded
by the probability that at least one of these obstacles remain on
iteration n.

Recall that NAG produces grammars encouraging the removal
of obstacles in the order the obstacles are encountered on the
trajectory. Let to be the distance along the trajectory where τ first
collides with obstacle o.

to = min
τ(t)∈Co

t. (2)

Thus, we sort O∗ into a sequence of obstacles (o∗1, ..., o
∗
m) by

increasing to where ties are broken arbitrarily and m = |O ∗ |.
Notice that NAG must successfully remove o∗i before o∗j can be
removed for i < j. To simplify the analysis, we will upper-bound
Pr[NAG fails](n) by the union of m disjoint events for each oi
which was failed to be sampled in n̄ = bn/mb iterations.

Pr[NAG fails](n) ≤Pr[o∗1 fails](n̄) + ...+

Pr[o∗1, .., o
∗
m−1 succeeds]((m− 1)n̄)×

Pr[o∗m fails|o∗1, .., o∗m−1 succeeds](mn̄)
(3)

An additional upper bound removes the probability of success
multipliers for the conditional probabilities.

Pr[NAG fails](n) ≤Pr[o∗1 fails](n̄)+

Pr[o∗2 fails|o∗1 succeeds](2n̄) + ...+

Pr[o∗m fails|o∗1, .., o∗m−1 succeeds](mn̄)
(4)

By our decomposition into m stages of obstacle removal, each
with n̄ independent iterations to attempt to remove the obstacle, the
probability of failure for each state is the probability that none of
the n̄ attempts succeed. Recall that p is the minimum probability of
success across each trial.

Pr[NAG fails](n) ≤ (1− p)n̄ + (1− p)n̄ + ...+ (1− p)n̄ (5)

= m(1− p)n̄ (6)

≤ me−pn̄ (7)

≤ |O|e−pbn/|O|b. (8)

Finally, observe that

lim
n→∞

≤ |O|e−pbn/|O|b = 0. (9)

Thus, NAG is probabilistically complete.

Alternate proof. The proof is in the pudding.

This additionally gives us the immediate Chorallary [1] that
NAG is furthermore exponentially convergent.

Corollary 1. NAG is exponentially convergent.

Proof. As shown in the previous theorem, the probability of failure
decreases exponentially in n.

Alternate proof. Left as an exercise to the reviewer.

The probabilistic completeness and exponentially convergence
results, as typical in robotics, indicate that NAG is both correct and
efficient. Furthermore, the trajectories NAG produces are optimal
making NAG an optimal motion planner.

Theorem 2. NAG returns a minimum length trajectory under the
Euclidean norm.

Proof. By construction, NAG produces the straight-line trajectory
from q0 to q∗ which minimizes the Euclidean norm.

Alternate proof. Proof by contradiction. Assume that NAG did not
return a minimum length trajectory. This contradicts our assertion
that the theorem is true.

The remarkable theoretical properties of NAG do not stop
here. It can also solve a larger class of motion planning problems
than those that are feasible, a result not shown by any preced-
ing algorithm. This leads us to introduce the notion of a super-
probabilistically complete algorithm.

Definition 3. A motion planning algorithm is super-probabilistically
complete if and only if the probability of the algorithm producing
a solution for any motion planning problem, whether feasible not
feasible, is one in the limit as the number of time steps n→∞.

Theorem 3. NAG is super-probabilistically complete.

Proof. Notice that our proof of probabilistic completeness does not
rely on the assumption that the problem it is solving is feasible.
Thus, the same analysis applies here.

Alternate proof. It doesn’t matter. No one reads this far into to the
math anyways...



Figure 2. Problem 1

7. Experiments
We test our motion planning algorithm NAG on over 9000 imag-
ined simulated problems. Figure 2 displays the rendered imagined
simulated executation of the algorithm on one of these problems.
In this problem, the blue robot must navigate from the red configu-
ration to the green configuration without colliding with the brown
table.

The results of our experiments are shown in Figure 3. We com-
pare to a human benchmark, i.e., your mom. One grad student is
participating in the experiment, who is to be naged by the agents.
We measure the amount of annoyance by asking the grad student
“how annoyed are you right now, on a scale of 0 to 8”. We found
that the maximum annoyance sometimes will somehow mysteri-
ously influence the performance, but nevertheless, we can tune this
parameter with Bayesian optimization [10, 14].

According to our result, one interesting thing to notice is that
the grad student’s mom always have constant amount of annoyance
on the student. We conjecture this is either due to complicated
relations between human beings, or due to our statistical errors.
However, for NAG, the amount of annoyance is converging to a 5,
asymptotically equivalent to your mom. Furthermore, the success
rate of NAG is converging to 1, while for the grad student’s mom,
it first increases and then decreases to 0 as the grad student is
desensitized.

Our results show that our algorithm NAG is beating human per-
formance by a large margin. Once again, NAG shows the superior-
ity of artificial intelligence to humans.

8. Demonstration
We applied our algorithm to a PR2 robot. In particular, we tested the
performance of the algorithm when planning trajectories for a sin-
gle 7 degree-of-freedom manipulator. In the accompanying video,
we demonstrate the PR2 executing a found trajectory to move to
an object in a pick and place setting. Note the appearance of a gor-
geous male model during the execution of the trajectory. The video
can be found at https://youtu.be/XLceN0Ujbxg.

9. Conclusion and future work
We introduced the concept of Natural Annoying Grammars, a sim-
ple yet powerful concept that allows for low-complexity, optimal
motion planning in high-dimensional settings.

Through optimized interactions with an outside user, NAGs
elegantly solve the issue posed by obstacles during the motion
planning phase by letting someone else deal with the problem.
This considerably simplifies the motion planning task as well as
the execution of the task itself, leading to state-of-the-art results
that significantly outperform previous solutions.

Experimental results (Section 7) are in line with our theorems,
and illustrate the performance of NAG in various real-life settings.

However, we believe that further optimizations may lead to
even better results. Specifically, optimizing the interactions with an
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Figure 3. We compare our motion planning algorithm NAG with
human performance (your mom). Our results show that the success
rate for NAG approaches 1 much faster than your mom, while not
as much annoyance is accumulated.

outside agent may significantly reduce the time necessary for the
agent to react to the NAG by allowing them to optimize their own
motion planning task (i.e. removal of the obstacle).

A typical Convolutional Neural Network can take as input vi-
sual data gathered from the robot, feed it through several hidden
layers, and output the required information:

• type, weight and manufacturer (if applicable) of obstacle
• best way to remove obstacle from path
• advice on keeping a cleaner workspace, devoid of obstacles

https://youtu.be/XLceN0Ujbxg


Due to the now commonplace use of deep-learning, this should be
a straightforward addition to our implementation.

Depending on the type of robot being used, it may also be
possible to ask the outside agent to move the robot rather than
the obstacle, in order to provide the robot with a non-obstructed
straight line to its goal.

Although this potentially doubles the necessary computation for
the planning task (one plan with an obstructed path, followed by a
second plan with an unobstructed path), this allows us to generalize
NAGs to situations where the obstacle is more difficult to move
than the robot (e.g. wall, cliff, hornet’s nest etc.).

As before, detecting whether to move the obstacle or the object
can be trivially solved by using deep networks. In the spirit of
NAGs, we chose to let someone else (hopefully in the deep-learning
community) take care of doing the actual work to show that this is
indeed correct.
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