

Michael Coulombe Prashant Vasudevan

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 32 Vassar Street, Cambridge, MA, 02139 {mcoulomb, prashvas}@mit.edu

Abstract

Word Blanks is a game in which one player has as input a secret paragraph with some words replaced with blanks with part-ofspeech tags, such as $\frac{1}{plural noun}$, and the other player has as input the experience of being human for long enough to understand partsof-speech. The first player queries the other player with part-ofspeech tags and receives words to put in the corresponding blanks. The goal of Word Blanks is to maximize the humor of the resulting paragraph.

First, we collected data from a representative population of 11 theoretical computer science grad students as the second player in the game, then chose 5 filled paragraphs and asked 20 computer science grad students which of a pair was funnier given the order they were presented.

Second, we took our data and used a logistic regression model to learn which paragraph in any ordered pair is more humorous, and applied the model to the other filled paragraphs.

Our results are that humor dominance is a strict partial order, and that the second paragraph presented is usually the most humorous.

1. Introduction

Formally, Word Blanks is a family of functions $WB = \{wb_k\}_{k \in \mathbb{N}}$ each taking a secret paragraph p and an response function r and returning a filled paragraph in the human experience monad \mathbb{H} .

$$p ::: \P = \mathsf{PoS}^k \times (\mathsf{W}^k \to \mathbb{H} \mathsf{W}^n), k \le n$$
$$r :: \Re = \mathsf{PoS}^k \to \mathbb{H} \mathsf{W}^k$$
$$\mathsf{wb}_k :: \P \to \Re \to \mathbb{H} \mathsf{W}^n$$
$$\mathsf{wb}_k p r = r p_0 >> = p_1$$

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed to ACM.

Copyright © ACM [to be supplied]...\$15.00 DOI: http://dx.doi.org/10.1145/(to come)

Tag	Part of Speech	Your Word
JJ	ordinal adjective or numeral	
NN	noun	
NNS	plural noun	
JJ	ordinal adjective or numeral	
NNP	singular proper noun	
NNS	plural noun	
VBN	past participle verb	
NNP	singular proper noun	
VBD	past tense verb	
NNS	plural noun	
NN	noun	
VBN	past participle verb	
JJ	ordinal adjective or numeral	
VBZ	3rd p. sing. present tense verb	

Table 1. Input format

We investigated the Word Blanks humor relation \hbar , which takes two filled-in paragraphs and determines which one is funnier in \mathbb{H} .

$$\hbar :: \mathsf{W}^n \to \mathsf{W}^n \to \mathbb{H} 2$$

2. The Text

Given our audience, we secretly chose our paragraph as the abstract of a notable theoretical computer science paper.

2.1 Original Quote

"A large class of computational problems involve the determination of properties of graphs, digraphs, integers, arrays of integers, finite families of finite sets, boolean formulas and elements of other countable domains. Through simple encodings from such domains into the set of words over a finite alphabet these problems can be converted into language recognition problems, and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily solved when an algorithm for its solution is found which terminates within a number of steps bounded by a polynomial in the length of the input. We show that a large number of classic unsolved problems of covering, matching, packing, routing, assignment and sequencing are equivalent, in the sense that either each of them possesses a polynomial-bounded algorithm or none of them does." [4]

2.2 The Word Blanks Game

We used nltk, Python's Natural Language Tool Kit [3], to generate part-of-speech tags. Due to its mistakes, the paragraph was modified slightly as follows:

class of computational problems The ordinal adjective or numeral properties of graphs, digraphs, involve the noun of integers, finite families of integers, plural noun -ean formulas sets. ordinal adjective or numeral singular proper noun and elements of other countable domains. Through simple encodings from such domains into the set of over a finite alphabet these problems can be plural noun recognition problems, into past participle verb singular proper noun and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily when an algorithm for its solution is found past tense verb which terminates within a number of bounded plural noun of the input. We show by a polynomial in the noun that a large number of classic problems past participle verb matching, packing, of covering, routing, assignment and -order equivalent, in sequencing are ordinal adjective or numeral the sense that either each of them 3rd p. sing. present tense verb a polynomial - bounded algorithm or none of them do

3. Procedure

In the first part of the experiment, data sources were recruited at Theory Tea and asked to fill in copies of Table 2.1 printed on slips of paper. The sources were not told what their input would be used for, and we replaced their names with NP-Complete problems for anonymity. 11 sets of words were collected in total.

Three other sets of words were also used, which were generated as follows:

- One set was randomly generated using the lists made available at [1].
- One set was generated using the next word prediction features of the Messaging app Version 4.4.2-G730AUCUBNG4 on an Android cellular phone.
- One set was the actual set of words used in [4].

The sets of words thusly obtained were used to complete the Word Blanks game from Section 2.2 to generate test paragraphs. Out of these, a set of 5 test paragraphs were selected according to the whims of the authors.

In the next part of the experiment, a random set of 20 evaluators were chosen based on their proximity to 32-G578. After an apology for the rude interruption from their research, each was presented with two test paragraphs, one at a time, and asked to read them without being told what for. After the evaluator had read both paragraphs, they were asked which of the two they found funnier. For each evaluator, the identity of the paragraphs presented, the order in which they were presented, and the identity of the one judged funnier were recorded. From 20 evaluators, we had one comparison for each pair of paragraphs in either order of presentation.

Once this data was obtained, Logistic Regression (specifically, the implementation in the scikit-learn Python package [2]) was used to predict the results of comparisons between the remaining pairs. The input data for the regression was generated as follows:

- 1. Each character in each word was converted to its ASCII value.
- 2. For each blank, all words corresponding to that blank across all sets of words were padded with zeros to be of the same length.
- For each set, these padded ASCII words were concatenated to yield one vector of numbers.
- 4. For each pair of sets, their vectors were concatenated to yield the final input vector.

The set of evaluations obtained from the evaluators was then used as training data to the logistic regression-based classifier, which was then used to predict results of comparisons between all pairs of sets of words.

4. Results

Figure 1. Graphical representation of collected evaluations

The results from the evaluators is presented in Tables 2 and 3. The test paragraphs used are included in Appendix A.1. The same is represented graphically in Figure 1. In all diagrams and tables, blue represents that one paragraph in the pair was funnier than the other whether it was presented first or second; green represents that the first paragraph presented was always funnier, and red that the second paragraph presented was always funnier. In the graphs, blue arrows have both ends pointing in the same direction (away from the funnier paragraph), green arrows point outward, and red inward.

The following interesting observations may be drawn from our experimental data:

- 75% of theorists are more funny when they go second, whereas random won most when it went first.
- ILP (a theorist) is isomorphic to Random.
- The two best performing theorists both referenced U.S. presidents or presidential candidates.

Table 2. Collected evaluations. The paragraph corresponding to the author on the left was shown first. Arrows point to the winner in each comparison.

 Table 3. Number of victories when presented first, second, and in total, from collected evaluations

- The two best performing theorists both used concrete numbers as their "-order equivalent" word
- 42 was put by **SAT** and **ILP** in the same blank.

The results of the predictions of the model is represented in Table 4 tabularly and Figure 3 graphically, whereas Figure 2 contains just the blue "dominance" arrows. Our striking result is that humor dominance is a strict partial order, meaning it is anti-reflexive and transitive.

When considering how *varying* the *ordering* affects the *relative* humor of Word Game pairs, we noticed that our model predicted 21 blue arrows, 22 green arrows, and 51 red arrows, thus that the number of second-place victories is $\frac{123}{188} = 0.6542553191489362\%$, compared to a mere $\frac{65}{188} = 0.34574468085106386\%$ first-place victories. Thus, a paragraph is nearly 1.8923076923076922 times more likely to be more humorous if it appears second.

5. Acknowledgements

We would like to thank our test subject theorists for volunteering their human experience to science: G, Will, Nick, Adam, Aviv, Sam, Shalev, Pritish, Rio, Prashant, and Atalay.

References

- [1] Randomlists.com. http://www.randomlists.com/. Accessed: 2016-02-29.
- [2] scikit-learn. http://scikit-learn.org/. Accessed: 2016-02-29.

- [3] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O'Reilly Media, 2009.
- [4] R. M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., pages 85–103, 1972. URL http: //www.cs.berkeley.edu/~luca/cs172/karp.pdf.

A. Paragraphs

A.1 Test Paragraphs

These were the paragraphs actually presented to evaluators.

1. Random:

The	eigt	h	class of computational problems invol									
the	paper	. 1	properti	es of	grap	ohs, digr	aphs,	integers,				
t	ables	of inte	egers, fi	nite fa	amilie	es of	two	sets,				
F	Freddie M	ercury	-ean	forn	nulas	and eler	nents	of other				
	countable domains. Through simple encodings from such do- mains into the set of noses over a finite alphabet these											
problems can be tickled into Robert Downey Jr.												
tiona	recognition problems, and we can inquire into their computa- tional complexity. It is reasonable to consider such a problem satisfactorily robbed when an algorithm for its solution											
	factorily					0		1				
is fo	und whic	h tern	ninates v	within	nan	umber of	a	rches				
boun	nded by a	polync	omial in	the	cro	owd o	f the i	input. We				
								blems of				
cove	rin <u>g</u> , mat	ching,	<u>p</u> acking	, rout	ing, a	issignmer	it and	sequenc-				
ing a	ing are last -order equivalent, in the sense that either											
each	of them	ju	mps	a po	lyno	mial-bour	nded a	algorithm				
or no	or none of them do.											

2. PARTITION:

The	dout	ole	class of computational problems involv							
the	bathroo	m j	properties o	of grap	phs, dig	graphs	, inte	egers,		
	stars	of inte	egers, finite	famili	es of	sixtee	en] sets,		
	Barac		ean for							
coun	table dor	nains.	Through sir	<u>npl</u> e e	ncoding	gs fron	1 suc	h do-		
mair	into the	e set of	shoes	ov	er a fini	te alph	abet	these		
				into		Ara G				
recognition problems, and we can inquire into their computa-										
tiona	al comple	xity. It	is reasonab	le to d	consider	such	a pro	blem		
satis	factorily [bar	fed whe	en an a	lgorithr	n for i	ts sol	ution		
is fo	und whic	h tern	ninates with	in a n	umber	ofs	swam	ps		
bour	nded by a	polync	omial in the	bu	ttox	of the	inpu	t. We		
		U	mber of clas					ms of		
cove	ring, mate	ching,	packing, rou	iting, a	assignm	ent and	d sequ	uenc-		
ing a	are 32,42	26,941	-order equ	ivalent	t, in the	sense	that e	either		
	of them		eats a p	olyno	mial-bo	unded	algo	rithm		

3. CLIQUE:

'	The	nth	ı	class of	con	iputa	tiona	al problem	s in	volve
	the	wolveri	ine	properties	of	grap	ohs,	digraphs,	inte	egers,
	wo	lverines	of int	egers, finit	e fa	milie	es of	i] sets,
	М	ichael Co	ulomb	e -ean f	orm	ulas	and	elements	of	other

Figure 2. Graphical representation predicted complete dominations.

Figure 3. Graphical representation of all predictions.

	VC	PARTITION	KNAPSACK	MAX CUT	Android	Original	HAM PATH	MIS	3SAT	Random	ILP	SUBSET SUM	CLIQUE	SAT
VC		\triangle		Δ	Δ	\triangle	Δ	Δ	Δ	\bigtriangledown	\triangleleft	\triangle		\triangle
PARTITION	Δ		\triangle	\triangle	\triangle	\triangle	Δ	\triangle	Δ	\bigtriangledown	(⊲)	\triangle		Δ
KNAPSACK		\triangle			\bigtriangledown		\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown			Δ
MAX CUT	Δ	\triangle			Δ	\triangle	Δ	\triangle	Δ			\triangle	Δ	Δ
Android	Δ	\triangle	\triangleleft	Δ		Δ	Δ	Δ		\triangleleft	\triangleleft	Δ	•	Δ
Original	Δ	Δ		Δ	Δ		Δ	Δ	Δ			Δ	Δ	Δ
HAM PATH	Δ	\triangle	\triangleleft	Δ	Δ	Δ		Δ		\triangleleft	\triangleleft	Δ	•	Δ
MIS	Δ	Δ	\triangleleft	Δ	Δ	Δ	Δ			\triangleleft	\triangleleft	Δ		Δ
3SAT	Δ	Δ	\triangleleft	Δ		Δ				\triangleleft	\triangleleft	Δ		Δ
Random	\triangleleft	(⊲)	\triangleleft		\triangleleft		\triangleleft	\triangleleft	\triangleleft		\triangleleft	\bigtriangledown		(∆)
ILP	\triangleleft	\triangleleft	\triangleleft		\triangleleft	-	\triangleleft	\triangleleft	\triangleleft	\triangleleft		\bigtriangledown		Δ
SUBSET SUM	Δ	Δ		Δ	Δ	Δ	Δ	Δ	Δ	\triangleleft	\triangleleft			Δ
CLIQUE				Δ		Δ								Δ
SAT	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	(∆)	\triangle	Δ	

Table 4. Model predictions for comparisons between all test paragraphs. The training people are highlighted with grey backgrounds. The paranthesised entries differ from the training data.

countable domains. Through simple encodings from such domains into the set of cabinets over a finite alphabet these into Michael Coulombe problems can be capped recognition problems, and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily sat when an algorithm for its solution parakeets is found which terminates within a number of bounded by a polynomial in the reefer of the input. We show that a large number of classic smoked problems of covering, matching, packing, routing, assignment and sequencing are bajillionth -order equivalent, in the sense that either each of them emulsifies a polynomial-bounded algorithm or none of them do.

4. SAT:

The	zero	th	class	class of computational problems involve								
the	pebbl	e	properti	ies o	of grap	ohs, dig	graphs,	integers,				
fl	owers	of in	tegers, f	inite	familie	es of	42	sets,				
	Property -ean formulas and elements of other											
coun	countable domains. Through simple encodings from such do-											
	mains into the set of capes over a finite alphabet these											
•	lems can				into		Anarch	-				
reco	gnition p	roblen	ns, and	we ca	an ing	uire inte	o their o	computa-				
tiona	d comple	xity. I	t is reas	onab	le to c	consider	such a	problem				
satis	satisfactorily dead when an algorithm for its solution											
is fo	und whic	h teri	ninates	with	in a n	umber o	of c	anes				
boun	bounded by a polynomial in the spoon of the input. We											

show that a large number of classic missed problems of covering, matching, packing, routing, assignment and sequencing are minus one -order equivalent, in the sense that either each of them sleeps a polynomial-bounded algorithm or none of them do.

5. ILP (Integer Linear Programming):

The \aleph_2	\aleph_2 class of computational problems involve								
the orangutan	properties of graphs, digraphs, integers,								
kids of	integers, finite families of 42 sets,								
Donald countable domai	-ean formulas and elements of other ns. Through simple encodings from such do-								
mains into the set of monkeys over a finite alphabet these									
problems can be blown into Bernie									
tional complexity	recognition problems, and we can inquire into their computa- tional complexity. It is reasonable to consider such a problem satisfactorily trumped when an algorithm for its solution								
is found which t	erminates within a number of ducks								
bounded by a pol	ynomial in the wand of the input. We								
show that a large number of classic danced problems of covering, matching, packing, routing, assignment and sequencing are 163 -order equivalent, in the sense that either each of them sings a polynomial-bounded algorithm									
or none of them do.									

A.2 Other Paragraphs

These were the paragraphs that we only predicted the outcomes of.

1. VC (Vertex Cover):

The	fift	fifth class of computational problems involve							
the	tea		properties	of	grapł	hs, dig	grap	hs, inte	egers,
1	ooxes	of ii	ntegers, fini	te far	nilies	s of	thi	rteen	sets,
	Grine	h	-ean f	ormu	ılas a	and el	eme	ents of	other
coun	countable domains. Through simple encodings from such do-								
mair	mains into the set of computers over a finite alphabet these								
prob	problems can be brought into Michael								
tiona	recognition problems, and we can inquire into their computa- tional complexity. It is reasonable to consider such a problem satisfactorily ran when an algorithm for its solution								
is fo	und whic	ch tei	minates wi	thin	a nu	mber o	of	pant	s
bour	ided by a	poly	nomial in th	ie 🗌	bana	ana	of t	the inpu	t. We
show that a large number of classic done problems of covering, matching, packing, routing, assignment and sequencing are seventh -order equivalent, in the sense that either each of them sits a polynomial-bounded algorithm									
or no	or none of them do.								

2. MAX CUT:

The	eleventy	/-first	class o	class of computational problems involve							
the	justic	e j	properti	es of	gra	phs, di	grapl	hs, ii	ntegers,		
k	ittens	of inte	egers, fi	nite f	amili	es of	ze	ero	sets,		
	Willia	m	-ean	forn	nulas	and el	eme	nts o	of other		
coun	table dor	nains.	Throug	h sim	ple e	encoding	gs fro	om si	uch do-		
mains into the set of Canadians over a finite alphabet these											
problems can be invented into Socrates											
recognition problems, and we can inquire into their computa-											
tiona	l comple	xity. It	is reas	onabl	e to	consider	r suc	h a p	oroblem		
satis	factorily	interc	epted	when	an a	algorithi	n fo	r its s	solution		
is fo	und whic	h tern	ninates	withi	1 a r	umber	of	doi	nuts		
boun	ided by a	polync	omial in	the	tria	angle	of t	he in	put. We		
show	that a la	rge nu	mber of	class	ic	sough	t	prob	lems of		
cove	rin <u>g</u> , mate	ching,	packing	, rout	ing,	assignm	ent a	and se	equenc-		
ing are minus fifth -order equivalent, in the sense that either											
each	of them	des	stroys	a po	olync	mial-bo	unde	ed alg	gorithm		
or no	or none of them do.										

3. MIS (Independent Set):

The	nint	h	class of	class of computational problems involve							
the	geomet	ry	properti	es o	f grap	ohs, dig	graphs,	inte	egers,		
	dogs	of int	egers, fi	nite f	amilie	es of	three		sets,		
	me					and el					
coun	countable domains. Through simple encodings from such do-										
mair	mains into the set of burgers over a finite alphabet these										
prob	lems can	be	killed	1	into		you				
reco	gnition p	oblem	s, and	we ca	n inq	uire int	o their	com	puta-		
	al comple										
satis	satisfactorily dead when an algorithm for its solution										
is fo	und whic	h tern	ninates	withi	n a n	umber	of	fries	s		
bour	bounded by a polynomial in the chess of the input. We										

show that a large number of classic pwned problems of covering, matching, packing, routing, assignment and sequencing are zeroth -order equivalent, in the sense that either each of them plays a polynomial-bounded algorithm or none of them do.

4. SUBSET SUM:

The	uncoun	table	class of	class of computational problems involve							
the	fish		properties	of	grapł	ns, dig	graphs	s, inte	egers,		
5	sheep	of int	egers, fini	gers, finite families of ω^{ω} sets,							
	Turin	g	-ean f	formu	ılas a	and el	emen	ts of	other		
coun	table dor	nains.	Through	simpl	le en	coding	s froi	n suc	h do-		
main	mains into the set of iPhones over a finite alphabet these										
problems can be vaulted into Babbage											
recognition problems, and we can inquire into their computa-											
tiona	al comple	xity. I	t is reason	able	to co	onsider	such	a pro	oblem		
satis	factorily [ea	iten w	hen a	ın alg	gorithn	n for	its sol	lution		
is fo	und whic	h terr	ninates wi	ithin	a nu	mber o	of	finge	rs		
bour	nded by a	polyn	omial in th	ne	chick	ken	of the	e inpu	it. We		
show	v that a la	rge nu	mber of c	lassic	:	called	p	roble	ms of		
cove	ring, mate	ching,	packing, 1	routin	ıg, as	signm	ent an	d seq	uenc-		
ing a	ing are countable -order equivalent, in the sense that either										
	each of them swims a polynomial-bounded algorithm										
or no	or none of them do.										

5. KNAPSACK:

The	13t	h	class of computational problems involve							
the	chess	3	propertie	es of	grap	hs, d	igraph	s, int	egers,	
l	poobs	of int	egers, fi	nite fa	milie	s of	1		sets,	
	Lond						lemen			
coun	table dor	nains.	Through	h simp	le en	codin	gs fro	m suc	h do-	
mair	is into the	e set o	f glas	sses	ove	r a fin	ite alp	habet	these	
prob	lems can	be	beater	n i	nto		Mose	cow		
	recognition problems, and we can inquire into their computa- tional complexity. It is reasonable to consider such a problem									
	* r	5								
satis	factorily	rid	den	when	an al	gorith	m for	its so	lution	
is fo	und whic	ch terr	ninates v	within	a nu	mber	of	hair	S	
bour	nded by a	polyn	omial in	the	hor	rse] of th	e inpu	ıt. We	
	v that a la								ms of	
cove	covering, matching, packing, routing, assignment and sequenc-									
ing a	are 3	Brd	-order	equiv	alent,	in the	e sense	e that	either	
each	of them	SV	vims	a po	ynon	nial-b	ounded	i algo	orithm	
or no	one of the	m do.		-						

6. **3SAT:**

The	many	class of computational problems involve
the	spoon	properties of graphs, digraphs, integers,
attempts of integers, finite families of 3 sets,		
MIT		-ean formulas and elements of other
countable domains. Through simple encodings from such do-		
mains into the set of students over a finite alphabet these		

Harvard problems can be proven into recognition problems, and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily falsified when an algorithm for its solution is found which terminates within a number of professors bounded by a polynomial in the proof of the input. We struck problems of show that a large number of classic covering, matching, packing, routing, assignment and sequencing are 12 -order equivalent, in the sense that either each of them tries a polynomial-bounded algorithm or none of them do.

7. HAM PATH:

The zeroth class of computational problems involve the cheese properties of graphs, digraphs, integers, of integers, finite families of tenth glasses sets, -ean formulas and elements of other Sealand countable domains. Through simple encodings from such domains into the set of dinghies over a finite alphabet these problems can be stolen into Mona Lisa recognition problems, and we can inquire into their computational complexity. It is reasonable to consider such a problem when an algorithm for its solution satisfactorily jumped is found which terminates within a number of sharks of the input. We bounded by a polynomial in the moon show that a large number of classic fallen problems of covering, matching, packing, routing, assignment and sequencing are fifth -order equivalent, in the sense that either each of them kicks a polynomial-bounded algorithm or none of them do.